

STAAA PhD OPEN DAY

Dipartimenti di Eccellenza 2018-2022 DISTAL The Nexus Approach for Sustainability in Agriculture, Food, Energy & Water

June 1st, 2022

Bio-formulates as a promising control strategy against different Fusarium pathogens with intent to reduce food mycotoxins contamination

> PhD candidate: **Eleonora Cappelletti** Cycle: **36°**

(supervisor: Antonio Prodi; co-supervisors: Claudio Ratti)

The problems of fungal pathogens on durum wheat

Durum wheat

Italy is the main producer and consumer of this cereal

Durum wheat is subject to the attack of **numerous microorganisms** responsible for different diseases, that cause both **quantitative** and **qualitative** damages

Main pathogens

- Fusarium culmorum,
- F. graminearum and
- **F. pseudograminarum** are the main responsable of FCR/FFR/FHB, but not only Fusarium species are involved

(Microdochium spp.)

Grain contamination

Increasing in samples coming from **organic cereal farming**

New "OLD" problem

Presence of **mycotoxins** in wheat grains

NEXUS focus: Sustainability in Agriculture and Food

- Mycotoxins in food are carcinogenic and toxic secondary metabolites for humans/animals
- Reduction of the use of chemical pesticides in agriculture
- No alternatives to chemicals to date

• Finding effective **altrenative strategies** (non-chemical)

• Eco-friendly solutions are essential to prevent the health risk of consumers due to the consumption of contaminated food products and/or derivatives

How to deal with these diseases

✓ Good AGRONOMIC PRACTICES

✓ Use of HEALTHY SEEDS

✓ Use of LESS SUSCEPTIBLE VARIETIES

 \checkmark Use of COATED SEEDS

The organic seed coating technique with EOs or endophytic bacteria (or consortia) may represent a reliable and safe microbial based strategy able to control soil-borne pathogens.

Gantt diagram

Activity	Month	2	4	6	8	10	12	14	16	18	20	22	24	26 28	30	32	34	36
Δ1)	Fusarium and Microdochium pathogens identification and characterization																	
,(1)	1) Molecular identification at species level of several strains isolated from wheat samples																	
	2) in vitro and in vivo pathogenicity tests																	
	Endophytic bacteria of durum wheat																	
A2)	1) <i>in vitro</i> tests with different strains of <i>Lactobacillus</i> spp. (Collab. with University of Valencia)																	
	 Isolation and characterization of endophytic bacteria isolated from different durum wheat cultivars 																	
	2)Antagonistic capacity of endophytic bacteria																	
	3) in vitro and in vivo seeds coating test																	
	4) Open field trials at spike level – Sperimental field in Cadriano (BO)																	
A3)	Essential oils (EOs)																	
	1) in vitro tests of six different EOs to control wheat pathogens																	
	2) in vitro and in vivo seeds coating with EOs																	
A4)	Metabolomics profiling of microbial endophytic communities																	
	1) Metabolomics analysis by CG-MS and LC-MS of all the strains																	
	2) Analysis of the main VOCs from the Cell Free Surnatant																	
A5)	Preparation of thesis, articles and congress																	

The importance of collaboration with experts

At UNIBO – DISTAL

Agro-environmental Microbiology laboratory of DISTAL (Prof. Diana Di Gioia)

The lab is providing us a great support concerning:

- The <u>isolation of microorganisms</u> from different
 agricultural niches;
- The <u>characterization</u> of the isolated bacteria strains;
 - Their <u>application</u> to combat targeted pathogens in plants.

During my period abroad

University of Pharmacy of Valencia (Prof. Giuseppe Meca)

<u>Metabolomics profiling</u> of microbial endophytic communities isolated from durum wheat cultivars susceptible to FCR and FHB.

Fundamental in order to know all the <u>secondary</u> <u>metabolites</u> and <u>volatile compounds</u> produced by the different analyzed strains

Some of the obtained results

Dual culture assay

Seed coating with Lactobacillus spp. and Polyvinil Alcool

3,0

Today we are working on...

The expected results of my PhD are...

...to identify a defense strategy "respectful of the environment" through the use of a **biological coating**.

... to find an effective and stable formulation based on **microorganisms**, **substances produced by them** and/or **EOs**, in order to reduce the use of phytosanitary products of synthesis in the field

and be able to reduce the risk of mycotoxin contamination in food.