

DIP. DI INGEGNERIA INDUSTRIALE DAST (Doctorate in Aerospace Science and Technology)

Uncertainty analysis for engineers

Prof. Antonio Segalini, Uppsala University, Sweden Prof. Philipp Schlatter, FAU Erlangen, Germany Prof. Alessandro Talamelli, Alma Mater Studiorum, University of Bologna

18, 20, 21 November, 2 December

Dipartimento di Ingegneria Industriale, Via Montaspro 97, Forli', Italy

(picture from: http://paul-baxter.blogspot.it/2010/06/error-bars-are-necessary-part-of.html)

Day 1 – November 18th 11 a.m. – 1 p.m. AULA 1.4 <u>Virtual Room</u>

Experimentation, Error and Uncertainty

- Introduction (degree of goodness, uncertainty analysis)
- The experimental approach (questions and phases)
- Basic concepts and definitions (error and uncertainties, uncertainty intervals)
- Uncertainty of a measured variable: systematic (bias) error, random (precision) error, overall uncertainty
- Brief introduction to Data Reduction Equation (DRE) and sources of uncertainties
- Probability theory and statistics basics
- Definition of mean and variance of a sample population

Day 1 – November 18th 3-5 p.m. AULA 1.5 <u>Virtual Room</u>

Errors and Uncertainties in the Measured Variable

- Gaussian distribution (measurement normalization, confidence intervals)
- Central limit theorem (statement and implications)
- Sample population confidence intervals
- Criteria for outliers' rejection
- Effect of insufficient sampling time in statistically steady measurements
- Examples
- Taylor Series Method for propagation of uncertainties (including correlation terms, sensitivity coefficients of TSM)
- Expanded uncertainty of a result
- Special functional forms in the TSM

Day 2 – November 20th 2-4 p.m. AULA 1.2 <u>Virtual Room</u>

Uncertainty in a Result Determined from Multiple Variables

- Example with uncertainty which is a function of a variable
- Experiment planning (examples, comparison of two measurement techniques)
- Practical examples
- Repetition and replication (Moffat's analysis of a timewise experiment)
- Comprehensive example

Day 3 – November 21st 8.30-10.30 a.m. AULA 1.2 <u>Virtual Room</u>

General and Detailed Uncertainty Analysis

- Random uncertainty (Direct vs TSM estimation)
- Systematic uncertainty (list of error sources, correlated systematic error estimation)
- Exercises on combined uncertainties
- Monte-Carlo methods with examples
- Examples of MCM
- Assignment

Day 4 – December 2nd 10-12 a.m. ON-LINE <u>Virtual Room</u>

Validation of Simulations

- Accuracy of derivatives
- Verification (algorithm) & Validation (real world comparison)
- Validation uncertainty (estimation and examples)
- Time-series uncertainty (batch methods, BMBC, maybe ARM, stationarity)

Day 4 – December 2nd 2-4 p.m. ON-LINE <u>Virtual Room</u>

Data Analysis, Regression and Reporting of Results

- Regression model uncertainty
- Least square methods
- Uncertainties in the regression model: First model regression (conceptual equation)
- Calibration errors

Text book: Hugh W. Coleman and W. Glenn Steele, "Experimentation, Validation, and Uncertainty analysis for engineers", fourth edition, John Wiley & Sons, inc.