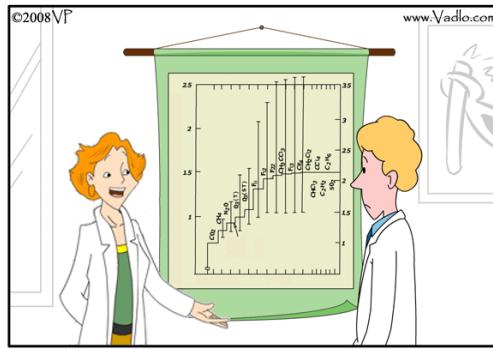


DIP. DI INGEGNERIA INDUSTRIALE
DAST (Doctorate in Aerospace Science and Technology)

Uncertainty analysis for engineers


Prof. Antonio Segalini, Uppsala University, Sweden

Prof. Philipp Schlatter, FAU Erlangen, Germany

Prof. Alessandro Talamelli, Alma Mater Studiorum, University of Bologna

9-12 March 2026

Dipartimento di Ingegneria Industriale, Via Montaspro 97, Forlì', Italy

(picture from: <http://paul-baxter.blogspot.it/2010/06/error-bars-are-necessary-part-of.html>)

Day 1 – March 9th 11 a.m. – 1 p.m. ON-LINE - AS

Experimentation, Error and Uncertainty

- Introduction (degree of goodness, uncertainty analysis)
- The experimental approach (questions and phases)
- Basic concepts and definitions (error and uncertainties, uncertainty intervals)
- Uncertainty of a measured variable: systematic (bias) error, random (precision) error, overall uncertainty
- Brief introduction to Data Reduction Equation (DRE) and sources of uncertainties
- Probability theory and statistics basics
- Definition of mean and variance of a sample population

Day 1 – March 9th 2 p.m. – 4 p.m. [ON-LINE](#) - AS

Errors and Uncertainties in the Measured Variable

- Gaussian distribution (measurement normalization, confidence intervals)
- Central limit theorem (statement and implications)
- Sample population confidence intervals
- Criteria for outliers' rejection
- Effect of insufficient sampling time in statistically steady measurements
- Examples
- Taylor Series Method for propagation of uncertainties (including correlation terms, sensitivity coefficients of TSM)
- Expanded uncertainty of a result
- Special functional forms in the TSM

Day 2 – March 10th 11 a.m. – 1 p.m. AULA 1.4 - AT

Uncertainty in a Result Determined from Multiple Variables

- Example with uncertainty which is a function of a variable
- Experiment planning (examples, comparison of two measurement techniques)
- Practical examples
- Repetition and replication (Moffat's analysis of a timewise experiment)
- Comprehensive example

Day 3 – March 11th 11 a.m. – 1 p.m. AULA 1.4 - AT

General and Detailed Uncertainty Analysis

- Random uncertainty (Direct vs TSM estimation)
- Systematic uncertainty (list of error sources, correlated systematic error estimation)
- Exercises on combined uncertainties
- Monte-Carlo methods with examples
- Examples of MCM
- Assignment

Day 4 – March 12th -10-12 a.m. [ON-LINE](#) - PS

Validation of Simulations

- Accuracy of derivatives
- Verification (algorithm) & Validation (real world comparison)
- Validation uncertainty (estimation and examples)
- Time-series uncertainty (batch methods, BMBC, maybe ARM, stationarity)

Day 4 – March 12th - 2-4 p.m. [ON-LINE](#) - PS

Data Analysis, Regression and Reporting of Results

- Regression model uncertainty
- Least square methods
- Uncertainties in the regression model: First model regression (conceptual - equation)
- Calibration errors

Text book: Hugh W. Coleman and W. Glenn Steele, "Experimentation, Validation, and Uncertainty analysis for engineers", fourth edition, John Wiley & Sons, inc.