Overcoming heterogeneity with the Web of Things in SEHM

Second year review

Fragmentation in SEHM

Methods to gather data: visual inspection, wireless sensors, wired sensors ...

Models to predict structural damage

Different data format

((ip)) •••••

••••

Distributed or centralized computing architecture

A variety of **communication protocols**

Structure properties itself: size, material, shape, accessibility, age, type...

The Web of Things (W3C)

- Use a semantic approach to describe software actors and software architecture
- ► The Thing Descriptor as fundamental building block. It describes:
 - Thing capabilities (Actions, Properties, Events)
 - ► How to have access to them
- Interoperability

TDs enable **machine-to-machine** communication in the Web of Things. Second, TDs can serve as a common, uniform format for developers to document and retrieve all details necessary to **access** IoT devices and make use of their data

Goal

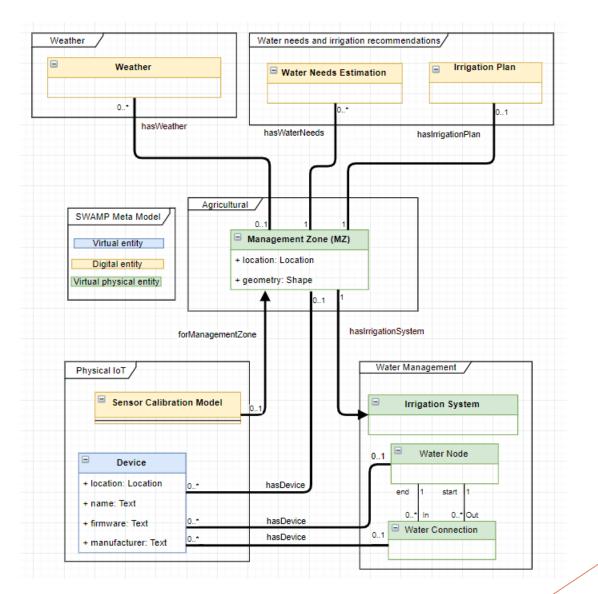
Build an innovative IoT architecture focused on smart structural health monitoring employing Web technologies and Open Data philosophy.

Open points

- Build a descriptive software model of the monitoring process
- ► How to seamlessly integrate other data sources or models like BIM
- How to effectively discover sensors and structures inside the Web of Structures
- How the software architecture influence the development of applications (machine learning, impact detection...)
- Use the improvements offered by the platform to build a generalpurpose visualization tool for damage or impacts

Projects

Software built during this year


Smart Water Management Platform

- Reducing effort in software development for IoT-based smart applications
- Automating advanced platforms and integrating different technologies and components
- Reliable agronomical models for plants and soils
- Planning algorithms for irrigation
- Automating visual data acquisition employing
 autonomous drones

SWAMP contribution - model

SMARTBench

- Use for safety purposes IoT technologies
- Bring **safety** to industry 4.0 discussion
- Rethink **safety** using all the possibility that new technologies can offer

MAC4Pro

SANThing			
Events	8	SANSensorThing	
+ Short: void	Events	6	
+ Failure: void	>rel:Child	ties	
+ Connected: void			
+ Disconnected: void	Action	8	
+ Undervoltage: void	rel:Sosa:	Sensor	
+ Overvoltage: void	\bigvee	\bigvee	
Properties	SAN SensorMesureThing	SAN SensorControlThing	SAN Sensor Debug Thing
+ Packets: Int	Events	Events	Events
+ Nodes: Int	+ Triggered: Object	Properties	+ TBD
+ Tension: Float	+ TriggeredProcessed: Object	+ NodeCfg: Object	Properties
+ Timeout: Int	Properties	+ MesureCfg: Object	+ TBD
+ PacketLength: Int	+ AccX: Float		
+ ConnectionState: Enum	+ AccY: Float	Actions	Actions
+ MeanDelay: Float	+ AccZ: Float	+ Reset(void):void	+ Query(Int,[Int]):[Int]
+ StartTime: Date	+ WX: Float		+ Command(Int,[Int]):Void
Actions	+ WY: Float		+ SelfTest;Object
+ On(void): void	+ WZ: Float		
+ Off(void): void	+ Theta: Float		
+ Sync(void): void	+ Phi: Float		
	Actions		
	+ Acquire(void):Array[Float]		
	+ AcquireProcessed(void):Object		

Some photos from this year

Pubblications

[1] C. Aguzzi et al., "From Heterogeneous Sensor Networks to Integrated Software Services: Design and Implementation of a Semantic Architecture for the Internet of Things at ARCES@UNIBO," in 2018 23rd Conference of Open Innovations Association (FRUCT), 2018.

[2] Aguzzi, C. and Roffia, L. (2019). SPARQL Update Processing: Extracting Inserted and Deleted Quads. In: Fruct 23rd. [online] Finland: FRUCT Oy, p.577. Available at: https://www.fruct.org/publications/abstract23/files/az-Agu.pdf [Accessed 18 Oct. 2019].

[3] Verardi, M., Aguzzi, C. and Roffia, L. (2019). SEPA View: a Web Application to Visualize Real-Time and Historical Linked Sensor data. In: Fruct 23rd. [online] Fruct Oy, p.582. Available at: https://www.fruct.org/publications/abstract23/files/az-Ver.pdf [Accessed 18 Oct. 2019].

[4] Tecnologia a servizio dell'agricoltura: con Swamp un sistema per ridurre lo spreco d'acqua, Unibo Megazine, 3 Giugno 2019. Available at: <u>https://magazine.unibo.it/archivio/2019/06/03/tecnologia-a-servizio-dell2019agricoltura-</u> <u>con-swamp-un-sistema-per-ridurre-lo-spreco-d2019acqua</u>.

[5] Sciullo, L., Aguzzi, C., Gigli, L., Roffia, L., Trotta, A., Salmon Cinotti, T. and Di Felice, M. (2019). WoT Store: a Thing and Application Management Ecosystem for the W3C Web of Things.

[6] Alfredo D'Elia, Paolo Azzoni, Fabio Viola, Cristiano Aguzzi, Luca Roffia, Tullio Salmon Cinotti, The OSGI SIB: A Resilient Semantic Solution for the Internet of Things, in: Semantic Web Science and Real-World Applications, Hershey, IGI Global, 2019, pp. 48 - 74 [Book Chapter]

[7] Viola, Fabio; Antoniazzi, Francesco; Aguzzi, Cristiano; Kamienski, Carlos; Roffia, Luca, Mapping the NGSI-LD Context Model on Top of a SPARQL Event Processing Architecture: Implementation Guidelines, in: Proceedings of the 24th Conference of Open Innovations Association (FRUCT), 2019, pp. 493 - 501 (proceedings: 24th Conference of Open Innovations Association (FRUCT), Mosca, 8-12 April 2019) [Conference proceedings]

[8] Sciullo, L., Aguzzi, C., Di Felice, M., & Cinotti, T. S. (2019, January). WoT Store: Enabling Things and Applications Discovery for the W3C Web of Things. In 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-8). IEEE.

Thank you for your attention

Overcoming heterogeneity with the Web of Things in SEHM

A year of research