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Last year...: Proposed strategy
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Last year: Results and problems
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Resulis:

** Accuracy = 95%

** Missed detection = 5%
** False alarm = 5%

Main Problems:

¢ It is often impossible to have training data of weak
conditions in real scenarios

¢ It is impossible to train Convolutional Neural Networks
with only one class

% Comparison with literature




Timeline

November 2018 November 2019

|
V...
/ / g
Review of the state-of-art  Investigation of structures  Implementation of novel
in structural monitoring and  widely known in literature  techniques for anomaly

anomaly detection: and access to databases:  detection in SHM and ...:

** Operational modal s Z-24 bridge ** One class classifier
analysis (OMA) ¢ Sensors displacement neural network

¢ Output-only modal % Structure (OCCNN)
identification characteristics ¢ Automated anomaly

¢ Auto-regressive moving  %* Monitoring period detection in SHM
average vector models  %* Monitoring ¢ Anomaly detection for
(ARMA models) characteristics intrusion detection

¢ Stochastic subspace ¢ Temperature effects *¢* Machine learning
identification (SSI) ¢ Damage condition algorithms for

** Principal component % Database topology inference
analysis (PCA) management

¢ Kernel PCA (KPCA) % Accelerometer data

% Gaussian mixture model <* Environment data ¢ Sensor failure effects
(GMM) ** Down sampling ¢ Quantization effects

¢ Autoassociative neural % Decimation ¢ Sensor failure
network (ANN) ¢ Filtering detection
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Z-24 bridge: structure description

Utzenstorf

Koppigen South North

Bern Zurich

Cross view

¢ Classical post-
tensioned concrete
two-cell box girder
bridge with a main
span of 30m and two
side spans of 14m

Elia Favarelli

¢ Long term monitoring
in standard condition
for 1 year

+*¢* Short term monitoring
in progressive damage
condition

*** 15 accelerometers
equipped

% 9 failures during the
monitoring period

% 8 reliable sensors used
for the following
processing



Z-24 bridge: Monitoring phases

4 August Undamaged condition Nomenclo’ru re
9 August Installation of pier settlement system ° fs — sample frequency [HZ]
* T, = acquisition time [s]

10 August Lowering of pier, 20 mm ° —
12 August Lowering of pier, 40 mm ° HS — r:::,rrr:]kl)oeerr fo So?crglzilsei:ions
17 August Lowering of pier, 80 mm °
18 August Lowering of pier, 95 mm LONG TERM MONITORING
19 August Lifting of pier, tilt of foundation 0:0 For ] year eGCh hour an
20 August New reference condition quUiSiﬁon iS ’raken from CI”
25 August Spalling of concrete at soffit, 12 m’ The sensors:
 f=100Hz
26 August Spalling of concrete at soffit, 24 m’ ° Tq = 655.36 S
27 August Landslide of 1 m at abutment ’ NS — 655 36
31 August Failure of concrete hinge ’:’ On the left the prog ressive
2 September Failure of 2 anchor heads dqmqge generq‘]‘ed
3 September Failure of 4 anchor heads qrﬁficiq”y by a |owering
7 September Rupture of 2 out of 16 tendons Sys-l-em
8 September Rupture of 4 out of 16 tendons ” U
nfortunately around 44% of the
9 September Rupture of 6 out of 16 tendons d ata hqve been |OS1'
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OMA: models overview

Finite element method

Pros:
* Accurate estimation of modal
parameters
Cons:
* Computationally complex ARMA method
* Need an accurate knowledge  Pros:
of the structure * No need of accurate
* Not generalizable knowledge of the structure
* Generalizable
Cons:

Peak Picking

Pros:

* Low complexity

* Blind method

Cons:

* Low accuracy in the modal
parameter estimation

* Input sensitive

* Computationally complex
* Convergence problems

Elia Favarelli 8



OMA: Output-only models

Y(w)

|

|
R He(w) N . He(w) : >

|

|

Combined system
Nomenclature

* N(w) = Input excitation

* H/(w) = Excitation system transfer function
* F(w) = Excitation system output

* H (w) = Structure transfer function

* Y(w) = Structure output

Hypothesis

* n(t) = white noise 2 N(w) = Flat
* H.w) = broadband
* H (w) = narrowband

Result
* F(w) excite all the modes of H_(w)

Elia Favarelli 9



OMA: Stochastic subspace identification (SSI)

A
Modal

Accelerometers Preprocessing

Operational

Analysis

Anomaly
Detection

A
) ~
! Mod, y
= ode
A, Selection
)

Preprocessing
* Filtering
* Decimation

SSI method

Pros:

* No need of an accurate
knowledge about the structure

* No need of a structure
simulation (blind method)

* Ouvutput-only model

* Closed form solution

* Good accuracy in the modal
parameter estimation

Cons:

* Computationally complex

Elia Favarelli

Model parameters (input)
* n = model order

* i=time lag

* | = number of sensors

Modal parameters (output)

* f = Natural frequencies
(scalar)

* A = Eigenvalues (vector)

* A = Dumping ratios (scalar)

* @ = Mode shapes (matrix)

*parameters extracted for each
measurement (each hour)

10
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Mode selection techniques: MAC

Elia Favarelli

‘@(.’i)* (5)‘
(1
123|122

MAC(®Y), W) =

Dimensionless correlation coefficient between
mode shapes

Takes value between O and 1, values larger
than 0.9 indicate consistent correspondence

and probably physical modes

12



Mode selection techniques: MPD

Im(¢;) 4

Indicator of the mode shape components deviation with respect
to the mean phase (IVP)

Singular value decomposition (SVD): USVT = [Re{®")} Im{®)}]
U € R**%, S € R**“ and V € R**?

—V;-
MP(®;) = arctan ( - 1,3)

Voo
>ty | @i farccos RE{‘I’&;‘:?;I?'{ ;1 ;b| Wi
MPD(®;) = ?
k=1 (I’jfc
MPD(CD )
* When .2 < 0.75 the mode is considered spurious

Elia Favarelli 13



Mode selection techniqgues: Damping ratios and Complex poles check

* Dumping ratios check: for each mode we
have a dumping ratio 6(j), in real structures
this factor must be positive and lower than
0.2 (otherwise the structure will be unstable)
hence only modes with 0<6(j)<0.2 are

considered

* Complex conjugate poles check: if the
eigenvalues of a mode do not have a
complex conjugate probably represent a
spurious mode and will be deleted, moreover
if the mode represent an unstable
structure hence the relative mode will be
considered as spurious

Elia Favarelli 14



Cleaning & Clustering

160

140

120

100

= 80

60

40

20

0 _
0 20 25

Elia Favarelli 15



Tracking: Algorithm

¢ Starting phase:
200 h of measurements

Rectangular window, size=0.2 Hz,
without overlap, range [0, 10HZ]

Select the more relevant
componets as starting points

+*¢* Online phase:
n = iteration number

3 h of measurements

Gaussian window, 6=0.16,
K. = mean of the elements that fall

in the intervall [p,_,*20]
* M,= Starting points

Elia Favarelli
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Tracking: Features Distribution

0:5
@
@
0 o3 °
faﬁ
0g®
0.5 .
e Standard condition
e Damaged condition

—0.5 0 0.5
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Anomaly detection algorithms: PCA

e Covariance matrix evaluation
XX
) J e —
Ny —1
* Eigenvalues decomposition o
> = VAVT

0.6

0.4

0.2

-0.2

0.4

* Projection in a lower dimensional
feature space
V;J = [v1|"‘v"g| e .. |Vp]

X;J = XVIJ
* Reconstruction

X — X;JVI;
* Error evaluation (Euclidean distance)

D

Z(fﬁn,d — En:d):z

d=1

o]
E. T n —_—
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0.6

-0.8

-0.8

Output Class

Target Class

BOUNDARIES
® CorrectIN
® Correct OUT
® False Alarm
® Missed Detection
06 -04 -02 0.2 0.4 0.6 0.8 1
f1
Confusion Matrix
218 0 100 %
26.9% 0.0% 0.0%
244 347 58.7
30.2% 42 9% 41.3
47 2% 100% 69.8%
52.8% 0.0% 30.2%
Q N
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Anomaly detection algorithms: KPCA

* Remapping of the points in a
new feature space (RBF)

K@) _ o—llz—xall?

n

* Application of the PCA
algorithm to the new points

* Error evaluation (Euclidean

distance)
D
€r, — Z(—Tn,d %’n:d
d=1
where

Elia Favarelli

with n=1.2...., Nx

f2

-0.8

Output Class

06 -04

BOUNDARIES

Correct IN

Correct OUT

False Alarm

Missed Detection #H

-0.2 0 0.2 0.4

0.6 0.8 1

f1
Confusion Matrix
440 6 98.7%
54 .4% 0.7% 1.3%
22 341 93.9%
2.7% 42 2% 6.1%
95 .2 98.3 96.5%
4.8 1.7% 3.5%
Q ~

Target Class
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Anomaly detection algorithms: GMM

BOUNDARIES

* Model order selection " S T
M=10 x B
0.4“ i i i
02 33
* Random initialization of M - -
Gaussian functions with e e
covariance matrix ) . and
mean value Y
i Parqme’rer Opﬁmizaﬁon "1 08 06 04 02 0 02 04 06 08 1
o [ f1
(stochastic gradient descent) Confusion Matrix
to best fit the data
distribution 2 564?% 10?3% et
. ('__“; 99 2%
* Threshold setting to ensure a 51 oz 32.6% 0%
false alarm in the training set 3

equal to 0.01 :

0.4%

89.5%
10.5%

()}

0

N

AN ~N

Elia Favarelli Target Class 20



Anomaly detection algorithms: ANN

* Mapping in a low
dimensional feature space
(bottleneck)

f,5,2 Kk

* Remapping in the starting
feature space minimizing the
reconstruction error

k19 fi,f;

Elia Favarelli

f2

0.8 fH

0.6 EEH

0.4

0.2

0.2F
0.4
06

-0.8E

Output Class

BOUNDARIES

...........

Correct IN

@ Correct OUT

False Alarm :
Missed Detection #H

-0.2 0

0.6

f1
Confusion Matrix
437 7 98.4%
54.0% 0.9% 1.6%
25 340 93.2%
3.1% 42 0% 6.8%
94 .6 98 .0% 96.0%
5.4 2.0% 4.0%
Q N

Target Class
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Anomaly detection algorithms: OCCNN

X

—~

Ax

Next iteration points

Training Density 1 : e e s
Data Estimator i : : gg:zt ::::lcr: U?acsl:ss
::::::::::::: H —emee gigE : . Error Type 1 (False Alarm)
a 0.6 ERRE e siisictic BN Error Type 2 (Missed Detection)
. ®, EEEHEEEE i
v
M| Adv Points| Z Neural | ®1
Generator Network e B s i
© ofE -
v 02
A2 Adv Points | 2 Neural | P2
Glenerator Network 4 B i
_0_6E§#§§§§#=:-:%:::ﬁ ﬁ ﬁi::::: ﬁ E
° ° ’ °
* Density estimator (Pollard’s estimator) <=

o~ (Zf&__}l 'l'jn T ]-
Ax =

A

Ne o
T an:l T'?’!.

Ax=estimated density, N, =n points,
k,,= k,-th neighbor,
1,,= distance from the k,,-th neighbor
* Hyper parameters setting
a1 = 0.3,“2 =0.8
* Feed-forward NN with two hidden
layers and 50 neurons in each layer

Elia Favarelli

-1 -0.8

0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
f1
Confusion Matrix

0 459 66 87 .4%

56.7% 8.2% 12.6%
w
w
o

s 3 281 98.9%

g_ 0.4% 34.7% 1.1%
s
S
(@]

99 .4 81.0% 91.5%

0.6% 19.0% 8.5%

Q N

Target Class
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Anomaly detection algorithms: Comparison

Fl

Rec

=OCCNN = GMM —KPCA = ANN — PCA

Elia Favarelli

ACTUAL VALUES

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

TP FN

POSITIVE (1)

NEGATIVE (0)

FP | TN

s Accuracy:

TP+TN
Acc =
. TP+TN+FP+FN
** Precision:

TP TP
Prec = =
TP+FP PP

*** Recall or Sensitivity:
TP TP

Rec = =

. TP+FN P

** F1 score:

PrecxRec
F1l =2 %
Prec+Rec

23



Conference papers: Anomaly detection on Z-24

One Class Classifier Neural Network for Anomaly
Detection in Low Dimensional Feature Spaces

Elia Favarelli, Enrico Test, and Andrea Giorgetti

DEL, University of Balagra

Via dell"Ui
c-mail: {clia favare

Abstract—in the kst decode, many approsches have been
devebaped in salbve ome-class clsilicaiion (1) problems foe
ammaly detection. Many of them rely o cstimating e statistical
distributon of ilee dats, find hidden pstterns, or remap the dats
in advantagenis festure speces. This kind of techndques usmslly
meeds seme o priori kewledge of the data distribution {ie.,
Gansian) or the setfing of some parsmeiers i ochieve pood
elassification performance. muking their use less offective when
the dsta distribution & wokmewn. In this paper, we propase
& novel blind snomaly detection for low dimensionad feature
spoces, that exploits the Hexibility of the nearal network (WN)
structure o find the cles bomndarics without amy informestien
about the shape of the dsta distribution. To prsve the gencrality
of the sslutsen, we tested mamy different clase shapes, and
we applied i o o sirucieral heslih monlioring SHM) case
study. Wilheut requiring the taning of hyperparamcters, the
perfurmance of the propased algorithn overcomes that of some
known approsches like principal component analyss (PUAL
kerned principal component snalysis (KPCAL Gaassian misture
model (VM) and_astiasocistive neorsl network (ANN) in
many caes, and performs well in the specitic SHM setting.

L INTRODL

In the least decade, we have witessed the rise of cyber
physical systems (CPSs) s the new em of intercannected
ahjects. CPSs consist of seasors o masilor the physical
environment and make decisions ko affect physical processes
through closed Joap controks. These systems will be widcly
adapted in criical infrasiructres, sach s ol and mabral
gas distribution, electrical power grid. industrial awlomatios,
amtomotive, and medical devices [1] |5]. Therefore, sysem
parameter manitoging and behavior classification are hecom
ing of paramount importance. Anather fascinating application
domain for CPSs will he srucharal health monitoring (SITM)
fir the timeky deicction of damage an a siscture, its location,
and type with application ranging from historical buildings o
large infrasiructanes.

Depending om the domain of application an asamaly is
called by alternative terms: alien class, ahnarmal class, cutlier
class, and altackerfintruder class. The tarpet of anamaly deicc
tiom is o discem wnusual smples in data by leaming 2 model
that accuraicly describes normality. Generally, ihis is solved 2
an unsspervised leaming problem where the trining datsst
cansists af narmal amples. since the ancmalous samples. are
ot known 2 priosi. This type of problem is also known @
ane-clss clasification (OCC) [6] [9]. From this perspective,

TION

versiti, 50,
crrice.testi, andrea giangelt § Funibo.it

77 Cesena, Ty

when the normal class boundaries are non Finear, and the data
distribustion i anknowns, 3 blind solation sble 1o find complex
patterns hecomes really suggestive.

MNowadays, many different tcchnigues are widcly used 10
sabve OCC problems [10]. In this paper, principal component
amalysis (PCA) [1], [12), kernel principal composent analysis
(KPCA} [13], Gamsian mivure model (GMM) [10], and
amirassociative newral nctwork (ANN) [ 14], will be presenied
as a henchmark. These techniques, while cffective in some
situatians, present quite well known Emitations:

« PCA: finds lincar boundarics, o it is recommended only
if the data are linearly separable in the feature space;

» KPCA: avercomes the PCA mitations by managing nos
limear boudarics, hut needs the chaice af an appropriate
kernel fisnction;

» CIMM: finds non lincar boundaries but assumes that the
data can be described by 2 mixture of Gaussian distriba
tioms and meeds the choice of the mest appropriate model
arde

» ANN: finds non lincar boundarics thanks 1o the nos
linear activation functices present in the hidden layers
but warks beticr when the feature space dimeasianality
ix high.

Te wrercome such Emitations, we propese a neural network
(NN hased solution shle to find non- linesr houndaries without
the need of hyperparameters. Our solution relics on density
estimation of the imining daia disiribution. the generabion
of an adversarial class 1o represent the possible anomalies,
and fimally, the training of a NN with the two classes. The
same procedure is repeated twice to improve NN delecticn
capability.

Throughout the paper, capital boldface letiers denote ma
trices, kwercase hokl lefters denote vectors, ()7 stands for
tramspasition, ||| is the &, narm of a vectar, & stands for the
Kranecker produsct, 1w is 2 column vecior of all ones and sine
N, E{-} is the expectation aperator, and V{-} is the variance
n:p..minr The rest of the paper is organized as follows. In

Section 11 the data sct and data normalisation are described.
Section T provides an averview of existing OCC technigues.
The one-class classifier neural network ((CC % presenied
in Section TV. Numerical resubts and a case study ane given in
Section V and Section VI, respectively. Conclusions ane drawn

FUTURE EXTENSIONS

¢ High dimensional feature space
** New damage sensitive feature

extraction
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PCA
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GMM
ANN
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Hyperparameter setting
Z-24 case of study
Accuracy

Precision

Recall

F1 score

Algorithm comparison

F1 > 939% with OCCNN
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Conference papers: Anomaly detection for intrusion detection

4

** Beacon extraction

* WiFi standard

* Power spectrum density
(PSD)

* Beacon average
PCA
KPCA

Received signal strength
(RSS) based algorithms

* Algorithm comparison

» Acc > 95% with only 1
beacon (KPCA) without
signal demodulation

(R )

L)

AR/

L)

2 )

o

/
‘0
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e

e

e

*
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Anomaly Detection Using WiFi
Signals of Opportunity

Eha Favarelh,

riee Test, Lorenzo Pucel, Marce Chiand, and Amdrea CGiorgeti

DEL University of Bologna

Via dell"Universith 50, 47522 Cesena, It

cmail: {clia favarelli2, enrico.estid, borenz.pucci?, marce.chiani, andrea. giorgetti] &unibo.it

Absrger—Ibetection of chalges in indisr arcas snd contrelled
environments is getting increasing intenest in ambicnt intclligence
and security. In this paper, we propese o radis frequency (RF)-
bhased amemaly detector that, shecrving the spectrum receved
from signak of opporiumity (Seddp) and exploiting mochine
karming (ML) techiigues, i capable of revealing changes in a0
indsor carvironmecnt. Based on real waveforms emitied by 3 Wikl
access poind (AF) and eollecied by  KF sensor, we demsnsirsie
ihai anomaly defeclien, eg. represented by the presence of
a person in the monitsred area. b possible The pre

v, tesied im o eypical office environment when the AP
sensor link is in mon-line-of sighi (NLOS), achicves am sccuracy
greater than U6 % just by collecting few hescon packets, ie., in
doeens of milliseconds. Moreover, results demonsdrade chat the
proposed approach owtperforms o well-known reccived signsl
sirength (R5%) based solutisn in terms of sccuracy, even using
Jusd 8 single sensar.

L. INTROBUCTION

With the advent of the lechnological revolution named
internet of things (IoT), increasingly pervasive and conlext
adeplive communication systems are conquering the radio
frequency (RF) spectrem [1]. Since spectrum population may
represent am isue in some frequency bands, ez, the over.
crowded indusirial, scicntific and medical (ISM) oncs, there
is an increasing imierest in exploifing existing over the air
signals, devised for some specific purpse, 1o perform other
tasks. thus avoiding dedicated radio emissions. Wilsi routers,
hroadcast sations, and mobile cellular netwarks are only a
few examples of such signals of epportunity (SoOp) 12] [5].

Security in homes, industrial environments, and facilitics is
bhecoming a critical aspect of modem socicly, and for ssch
reasans, ambicnt intelligence is gaining atention recently [6].
bazed surveillance systems using, for example, camenas
are the dominamt technology in such scenanios. Tlowever, the
personal privacy issue is sill a reason for deterring users.
The ambicnt imtelligence paradigm is not only bencficial for
security purposes but mare generally as an enabler for context
aware applications fike smart homes, io name one example.

The capakility to extract information from the effects of
the propagation an BRI signals opens up a way 1o acquire
knowledge about an enviranment by the chservation of So0p.
In this context, there are two main characieristics of the
ohserved signal used for desoction, anc is the received signal
strength (RS5), and the other & channcl state information
(CSI). The RSS is very sasy b get with simple hardware, s

it gained comsiderable atiention in the last decade. A human
motion localization method that exploils standard deviation of
RSS is presented in [7), [8), and the detection and tracking
of multiple persans in an indoor enviranment i proposed
in [9]. Mowever, technigues that exploit received power are
susceptible 1o muhupalh propagation and need 2 multitude
of dev (] c. even when confined i imdoor
envirmments [10]. [11]. Charnel estimation allows greater
precision when wsed in motion detection compared to RSS
measwrements. In [12], fine-grained subcamier information
(ie., channel froquency response) is exploited 1o design 2
device-free passive human detection. In [13], a scheme for
adaptive indoor passive detection is proposed, where the CS1
amplitude measisred in 2n indoor enviranment is shawn to vary
im the presence of human motion. In [14] the authors propese
a device-free RIF environmental vision system based bath om
RSS and CSI, while in [15] a crowd counting sysiem that uses
So0p is presented

Targevichargpe detection can also be performed with radar
techniques, cither using dedicated sources with large hand
width [I6], or using sources of opportunitics [17] with
smaller handwidth but in large envirenments that ensure tar
getfanamaly spatial resalution. Towever, owr goal here is 1o
awnid dedicated signals with very large bandwidth and perform
anamaly detection with SoDp even when the targetfanomaly
i nat. spatially resolvable.

This work propeses a machine leaming (ML) appreach for
anomaly delection in an indoar enviranment using Wil Salp.
In particular, the main costributions are the following.

» We wse inexpomsive RF smsors o collect Sa0p 18]

Environmental chamges are detected through RF channel
madifications without demaodulating the signal_

+ In particular, we recard and analyze amples that belang
i heacon packets transmitied by an access point (AFL
We compare the performance af twe ML classifiers
such as principal companent analysis (PCA) and kemel
principal companent analysis (KPCAJ, as a fanctics of
the: mumiber of beacon packets collected [19].

» The tesix have been performed in hoth fine-of sight (LOS)
and mon-line-of sight (NLOS) conditions.

+ Finally, we show that the proposed approach cxkibits
superior performance than a well known RSS - based salu
ticm in berms of accuracy, even using just a single sensor.

FUTURE EXTENSIONS
¢ Target detection trough wall
** Target localization

25



Conference papers: Topology inference

Machine Learning for
Wireless Network Topology Inference

Enrice Testi, Elia Favarelli, Lorer

DiE
Wia dell”Universita 50
e-mail: {enricouesid, elia favanel

Abstracs—In this work. we propese o mew franework for blind
wireless mciwork inpobugy Inferonce and present 2 nevd soluiion
hased on neschine lesrning (ML) technigues. In particalar, we
seck bo bdentify o camssl relstisnship between the patierns of
the radio-frequency (KF) transmisions of the modes in the
metwark fram sver-the-air stpnals sbeerved by & clond of sensers
wniformsly distribeted in the metwork lendscape. The proposed
framework is based on simple RF sensors fhai messure the
received power af a rabe suflicint io eviract traffic paticras.
Nomerical results hased on simulated dstn show how,

e propagation impainments ol Geise may alfedt the perfor-
mance of the algorithams, the neural network (NN -based solutsn
reaches W% of accurscy even wilh & relatively bew numher of
sensors.

I INTRODUCTION

The importance of netwarks, in their broad sense, is rapidly
and massively growing in modem day society thasks 1o
precedented commamication capabilities offersd by technol
agy. This aspect is even more cxacerhaied by the upcoming,
if ot already happening, revolution of cyber physical systems
{CPSs).

In this scerario of uhradenscly comnecied ohjects the
knowledge of network lopology, at different levels of ah
stractions, is am esseotial aspect that can help o predict
traffic flow, infer the patential receivers of 2 currently active
transmitier, understand the degree of connoctivity of users,
detect the presence of commumitics, help network maimie
mance, aptimization, and orchesiration. Morcover, in defonsc
applications, understanding the structure of an adversary™s
network may considerahly help o avoid dangerous situations,
making predictions, and desigring decision making strat

In many of the above mentioned scenarics, it scoms very
important, if nat mandstery, that netwark tapology is inferred
withoust the need of being a part of it or without increasing the
network averhead sharing iopelogy information [1), [2]. Far
thiis. reaon, in the kst decade, there has been an increasing
interest in the possibility of reconstructing the structwre aff
a network from fow chscrved quantifies at some modes (or
at the edges) with fittle, if not zem, a priari knowledge of
the network structere [3]. [4]. I the problem appears rather
complicated for a wired metwork, it can be even mare chal
lenging in a wirchess scenario because of channel impairments,
interference, path loss, shadowing and fading, and the so
called hidden icrminal problem. In fact, if we consider a
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large wirehess metwark, on one side. the potential connection
between the nodes could be inferred. for example, hased wpon
the distance between them. On the other side, many nodes can
be within communication mnge of many otbers and have the
potential to commamnicate with all of them. Tn this situation,
inferring which nodes are actually communicating, hasing
wpon the patterns of their activity, might be very usefisl.

Focusing an wirchess netwarks, the rapidly growing de
mand for radie scrvices by billions of devices will make the
radio spectrum an increasingly valushle resource. From this
perspective, cognitive radin (CR) devices will have & probe
the RF scene in time, space and freguency domain 1o ensune
that a well defined portion of the spectrum is free, making
muhidimensicnal spectrum analysis mandziory [5], [6], [7). In
this conlext, spectmum awareness, for which network iopalagy
plays a crucial role, will be of paamount importance.

A. Existing warks
There are different approackes and methodologics for net
wark topalogy inference proposed in the literatwre. Some of
them, such s [8]. explait spectral coberence as 3 measume of
causality between two signals. Tlence, a decision test with
a threshold is wsed o debect cawsal rehiions in the iffic
gencraed by the nodes. The main isuc of this approach is
that it is challenging In choose the correct frequency and the
optimal threshold for the decision test. Morcover, solutions
of this kind rcly upom the motion of oo i which, in
principle. does not necessanly imply causation. The task of
network topelogy infercrce can he seen as leaming lemporal
causal structures smong maltiple time serics. This reminds the
well known causal imference problem described by Pearl
[9] amd Granger [10]. In particular, Granger auto-regressive
(AR} model intreduced in [10] for coomometric ime series
amalysic hax heen employed mare recently in computational
mearoscience and neurvimaging, studying the interactions he

tween newrons in the brain [11] [12]). Granger caunsality {GC)
bascd sechnigques allow the identification of a threshald o
a parametric statistical test o make a decision [13], [14]

A specific formulation of GC named asymmetric Granger
cawsality {AGC) is cxploited in [15], where the parametric tests
are carried out over groups of Hme serics s will be explained
in Section [T Anather approach for causal inference oo
nectworks, that is oplimam under cortain restrictive Markevian

FUTURE EXTENSION
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+¢* Blind source separation
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Wifi protocol
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Sample variance
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NN provide better
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Future works...
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QUESTION L o
Why OCCNN overcome always the performance  ~ ()
of the others algorithms except in the SHM scenario? | "'
1 1982
ANSWER | N

This happens because the points are not uniformally distributed in the
feature space hence the Pollard’s estimator wrong estimate density

POSSIBLE SOLUTION

Adopt different techniques to estimate non-uniform density

NEW SCENARIOS

¢ Investigate the effects of quantization on the accelerometers data
¢ Study the effects of sensor failure on the detection accuracy

¢ Proposal of new technique to extract damage sensitive features
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Thanks for the attention!
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