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Last year: Results and problems
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Results:
❖ Accuracy = 95%
❖ Missed detection = 5%
❖ False alarm = 5%

Main Problems:
❖ It is often impossible to have training data of weak

conditions in real scenarios
❖ It is impossible to train Convolutional Neural Networks 

with only one class
❖ Comparison with literature

?? ?

?

?

?



Timeline
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November 2018 November 2019

Review of the state-of-art 
in structural monitoring and 
anomaly detection:
❖ Operational modal 

analysis (OMA)
❖ Output-only modal 

identification
❖ Auto-regressive moving 

average vector models 
(ARMA models)

❖ Stochastic subspace 
identification (SSI)

❖ Principal component 
analysis (PCA)

❖ Kernel PCA (KPCA)
❖ Gaussian mixture model 

(GMM)
❖ Autoassociative neural 

network (ANN)

Investigation of structures 
widely known in literature 
and access to databases:
❖ Z-24 bridge
❖ Sensors displacement
❖ Structure 

characteristics
❖ Monitoring period
❖ Monitoring 

characteristics
❖ Temperature effects
❖ Damage condition
❖ Database 

management
❖ Accelerometer data
❖ Environment data
❖ Down sampling
❖ Decimation
❖ Filtering

Implementation of novel 
techniques for anomaly 
detection in SHM and …:
❖ One class classifier 

neural network 
(OCCNN)

❖ Automated anomaly 
detection in SHM

❖ Anomaly detection for 
intrusion detection

❖ Machine learning
algorithms for 
topology inference

…

❖ Sensor failure effects
❖ Quantization effects
❖ Sensor failure 

detection

…



Z-24 bridge: structure description
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❖ 15 accelerometers 
equipped 

❖ 9 failures during the 
monitoring period

❖ 8 reliable sensors used 
for the following 
processing

❖ Long term monitoring
in standard condition 
for 1 year

❖ Short term monitoring 
in progressive damage 
condition

❖ Classical post-
tensioned concrete 
two-cell box girder 
bridge with a main 
span of 30m and two 
side spans of 14m



Z-24 bridge: Monitoring phases
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4 August Undamaged condition

9 August Installation of pier settlement system

10 August Lowering of pier, 20 mm

12 August Lowering of pier, 40 mm

17 August Lowering of pier, 80 mm

18 August Lowering of pier, 95 mm

19 August Lifting of pier, tilt of foundation

20 August New reference condition

25 August Spalling of concrete at soffit, 12 m
2

26 August Spalling of concrete at soffit, 24 m
2

27 August Landslide of 1 m at abutment

31 August Failure of concrete hinge

2 September Failure of 2 anchor heads

3 September Failure of 4 anchor heads

7 September Rupture of 2 out of 16 tendons

8 September Rupture of 4 out of 16 tendons

9 September Rupture of 6 out of 16 tendons

Nomenclature
• fs = sample frequency [Hz]
• Ta = acquisition time [s]
• Ns = number of samples
• Na = number of acquisitions

LONG TERM MONITORING
❖ For 1 year each hour an 

acquisition is taken from all 
the sensors:
• fs = 100 Hz
• Ta = 655.36 s
• Ns = 65536

SHORT TERM MONITORING
❖ On the left the progressive 

damage generated 
artificially by a lowering 
system

* Unfortunately around 44% of the 
data have been lost

• Na = 4107



OMA: models overview
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Finite element method
Pros:
• Accurate estimation of modal 

parameters
Cons:
• Computationally complex
• Need an accurate knowledge 

of the structure
• Not generalizable

ARMA method
Pros:
• No need of accurate 

knowledge of the structure
• Generalizable
Cons:
• Computationally complex
• Convergence problems

Peak Picking
Pros:
• Low complexity
• Blind method
Cons:
• Low accuracy in the modal 

parameter estimation
• Input sensitive



OMA: Output-only models
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Nomenclature
• N(ω) = Input excitation
• Hf(ω) = Excitation system transfer function
• F(ω) = Excitation system output
• Hs(ω) = Structure transfer function
• Y(ω) = Structure output

Hypothesis
• n(t) = white noise → N(ω) = Flat
• Hf(ω) = broadband
• Hs(ω) = narrowband

Result
• F(ω) excite all the modes of Hs(ω) 



OMA: Stochastic subspace identification (SSI)
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SSI method
Pros:
• No need of an accurate 

knowledge about the structure 
• No need of a structure 

simulation (blind method)
• Output-only model
• Closed form solution
• Good accuracy in the modal 

parameter estimation
Cons:
• Computationally complex

Model parameters (input)
• n = model order
• i = time lag
• l = number of sensors

Modal parameters (output)
• f = Natural frequencies 

(scalar)
• Λ = Eigenvalues (vector)
• ∆ = Dumping ratios (scalar)
• Φ = Mode shapes (matrix)

*parameters extracted for each 
measurement (each hour)

Preprocessing
• Filtering
• Decimation

Φ



OMA: Stabilization diagram
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Mode selection techniques: MAC
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• Dimensionless correlation coefficient between 
mode shapes

• Takes value between 0 and 1, values larger 
than 0.9 indicate consistent correspondence 
and probably physical modes



Mode selection techniques: MPD
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• Indicator of the mode shape components deviation with respect 
to the mean phase (MP)

• Singular value decomposition (SVD):

•

• When 
𝑀𝑃𝐷(Φ𝑗)

90°
< 𝟎. 𝟕𝟓 the mode is considered spurious



Mode selection techniques: Damping ratios and Complex poles check
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• Dumping ratios check: for each mode we 
have a dumping ratio δ(j), in real structures 
this factor must be positive and lower than 
0.2 (otherwise the structure will be unstable) 
hence only modes with 0<δ(j)<0.2 are 
considered

• Complex conjugate poles check: if the 
eigenvalues of a mode do not have a 
complex conjugate probably represent a 
spurious mode and will be deleted, moreover 
if Re{λ(j)}>0 the mode represent an unstable  
structure hence the relative mode will be 
considered as spurious



Cleaning & Clustering
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Tracking: Algorithm
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❖ Starting phase: 

• 200 h of measurements

• Rectangular window, size=0.2 Hz, 
without overlap, range [0, 10Hz]

• Select the more relevant
componets as starting points

❖ Online phase:

• n = iteration number

• 3 h of measurements

• Gaussian window, σ=0.16,       
μn= mean of the elements that fall
in the intervall [μn-1±2σ]

• μ0= Starting points

16



Tracking: Features Distribution
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Anomaly detection algorithms: PCA
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• Covariance matrix evaluation

• Eigenvalues decomposition

• Projection in a lower dimensional 
feature space 

• Reconstruction

• Error evaluation (Euclidean distance)



Anomaly detection algorithms: KPCA
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• Remapping of the points in a 
new feature space (RBF)

• Application of the PCA
algorithm to the new points

• Error evaluation (Euclidean 
distance)

where

D = NX

xn = Kn

෤𝑥𝑛 = ෩𝐾𝑛



Anomaly detection algorithms: GMM
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• Model order selection

M = 10

• Random initialization of M 
Gaussian functions with 
covariance matrix ∑m and 
mean value µm

• Parameter optimization
(stochastic gradient descent) 
to best fit the data 
distribution

• Threshold setting to ensure a 
false alarm in the training set 
equal to 0.01



Anomaly detection algorithms: ANN
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• Mapping in a low 
dimensional feature space
(bottleneck)

f1, f2 → k1

• Remapping in the starting
feature space minimizing the 
reconstruction error

k1→
෩𝐟𝟏, ෩𝐟𝟐

b0

b1

f1

f2

k1

෩f1

෩f2



Anomaly detection algorithms: OCCNN
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• Density estimator (Pollard’s estimator)

መ𝜆𝑥=estimated density, 𝑁𝑝=n points, 

𝑘𝑛= 𝑘𝑛-th neighbor, 

𝑟𝑛= distance from the 𝑘𝑛-th neighbor

• Hyper parameters setting
𝜶𝟏 = 𝟎. 𝟑, 𝜶𝟐 = 𝟎. 𝟖

• Feed-forward NN with two hidden 
layers and 50 neurons in each layer



Anomaly detection algorithms: Comparison

23Elia Favarelli

❖ Accuracy:

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
❖ Precision:

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=
𝑇𝑃

𝑃𝑃
❖ Recall or Sensitivity:

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
= 

𝑇𝑃

𝑃
❖ F1 score:

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐∗𝑅𝑒𝑐

𝑃𝑟𝑒𝑐+Rec



Conference papers: Anomaly detection on Z-24
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❖ PCA

❖ KPCA

❖ GMM

❖ ANN

❖ OCCNN

❖ Stress test

❖ Hyperparameter setting

❖ Z-24 case of study

❖ Accuracy

❖ Precision

❖ Recall

❖ F1 score

❖ Algorithm comparison

❖ F1 > 93% with OCCNN

*accepted ICSPCS, Australia, 
December 2019

FUTURE EXTENSIONS

❖ High dimensional feature space

❖ New damage sensitive feature 
extraction



Conference papers: Anomaly detection for intrusion detection
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❖ Beacon extraction

❖WiFi standard

❖ Power spectrum density
(PSD)

❖ Beacon average

❖ PCA

❖ KPCA

❖ Received signal strength
(RSS) based algorithms

❖ Algorithm comparison

❖ Acc > 95% with only 1 
beacon (KPCA) without
signal demodulation

*accepted ICSPCS, Australia, 
December 2019

FUTURE EXTENSIONS

❖ Target detection trough wall

❖ Target localization



Conference papers: Topology inference
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❖ Network simulation

❖ Spatial filtering

❖ Excision filtering

❖Wifi protocol

❖ Feature extraction

❖ Sample mean

❖ Sample variance

❖ Channel model

❖ Granger causality

❖ Transfer entropy

❖ NN

❖ Accuracy

❖ NN provide better
performance with lower
complexity

*accepted ICSPCS, Australia, 
December 2019

FUTURE EXTENSION

❖ Node localization

❖ Blind source separation



Future works…
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QUESTION
Why OCCNN overcome always the performance
of the others algorithms except in the SHM scenario?

ANSWER

This happens because the points are not uniformally distributed in the 
feature space hence the Pollard’s estimator wrong estimate density

POSSIBLE SOLUTION

Adopt different techniques to estimate non-uniform density

NEW SCENARIOS

❖ Investigate the effects of quantization on the accelerometers data

❖ Study the effects of sensor failure on the detection accuracy

❖ Proposal of new technique to extract damage sensitive features 



Thanks for the attention!
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