SUBMISSION FORM OF PROPOSALS FOR DOCTORAL RESEARCH PROJECTS

Objective of the Doctoral Programme in Health Sciences and Technologies

The objective of the new interdepartmental Doctoral Programme in Health Sciences and Technologies is to train the next generation of leaders in industrial, clinical, and academic research. Our goal is to develop an organic research programme at the interface between engineering and medicine, which is inspired by the quantitative and integrative approach of physical sciences, and by the latest development in biomedical research, drive the development and clinical translation of disruptive health technologies.

The doctoral training programme will prepare students in conducting research which:

- Extend the comprehension of how human physiology and pathology work in term of physical and chemical mechanisms, and how these mechanisms respond when perturbed by external factors such as therapies, changes in life style, and environmental factors;

- Develop new technologies that by leveraging on this mechanistic understanding pursue a wide spectrum of applications relevant to human health, including prevention, diagnosis, prognosis, treatment, and rehabilitation.

Procedural aspects on the submission of proposals for doctoral research projects

Every year the PhD process will start with the submission of proposals for doctoral research projects. Each proposal must be submitted jointly by two supervisors, one providing the clinical expertise, the other the technological expertise. The Project Selection Committee will select a number of projects that is three times the number of available scholarships and should be distributed in similar proportion between medical-led or technology-led proposals. The resulting list of projects will be included in the call for student applications that the Executive Committee will compile soon after. Each student, depending on their degree, will be able to apply only for a sub-set of projects; among them each student will be allowed to select three projects, and name them in order of preference; however, in some cases it might not be possible to satisfy all requests, and some students might be offered a research project different from those they selected.

Doctoral training program

In order to be admitted to the selection, a student needs a five-year higher education degree, which includes at least one module for each of the following disciplines: mathematics, physics, computer science, biology, physiology, and anatomy.

Max number of proposals for each member of the Academic Board: 3 (three) Max number of selected projects for each member of the Academic Board: 2 (two) Max number of selected projects for 2019: 12 (twelve)

Title of the projectPatient-Specific Spinal Surgery for Severe Scoliosis (PS5)

Student's degree (you can choose more than one, if needed)

Yes/Not	Cultural area		
NO	Medicine, biology, or related disciplines		
YES	Engineering, physics, mathematics, computer science, chemistry, materials science or		
	related disciplines. Degree in Mechanical Engineering or Biomedical		
	Engineering or Computer science		

Student's skills (you can fill more than one field, if needed)

Cultural area	Skills				
Medicine, biology,	Desirable (but not mandatory) experience:				
or related	• In the field of orthopaedics				
disciplines	Spinal surgery				
	• In the area of medical imaging				
Engineering,	Mandatory:				
physics,	Background in biomechanics				
mathematics,	• Some background in numerical modelling (multi body dynamics, finite				
computer science,	element modelling)				
chemistry,					
materials science	Desirable:				
or related	Mechanical testing				
disciplines	Musculoskeletal biomechanics				

Tutors (2, from different cultural areas and with at least 1 from the Academic Board)

Cultural area	Name & Surname	Department
Medicine, biology,	Dr Tiziana Greggi	Head Rachis Deformation Surgery
or related		Rizzoli Orthopaedic Institute
disciplines		
Engineering,	Prof. Luca Cristofolini	Dept. Industrial Engineering (DIN)
physics,		
mathematics,		
computer science,	Prof. Marco Viceconti	Dept. Industrial Engineering (DIN), and
chemistry,		Medical Technology Lab, Rizzoli
materials science		Orthopaedic Institute
or related		
disciplines		

Research project

	Synthetic description			
Summary	Scoliosis can be extremely threatening: pain, disability, compression of internal organs,			
(max 1000 chars)	breathing problems are just some of the consequences. In the most severe cases,			
	corrective spinal surgery is the only viable option. In young and growing patients,			
	adjustable devices must be used, that are mobilized over the months to correct the			
	spine and follow the patient's growth. One main challenge for the clinical specialist is			
	to choose the optimal treatment for each patient, for example how to plan the right			
	amount of adjustment over time, so as to achieve the desired correction while avoiding			
	complications and adverse effects. Currently, surgeons are guided only by intuition			
	and experience. The aim of this PhD project is to develop and validate a modelling			
	technology capable of generating patient-specific predictive models of the spine			
	biomechanics that can be used as a treatment planning tools, by simulating different			
	treatment options and predict the occurrence of adverse effects including spinal cord			
	compression, facets impingement, excessive strain of the intervertebral discs, excessive			
	stretch of the muscles.			

Objectives (max 1000 chars + max 5 relevant references)	 The project aims to develop a treatment simulation environment to optimise the treatment of scoliosis patients. The research will articulate in the following phases: Collection of dedicated biomechanical information (stiffness of discs and ligaments, range of motion) through <i>ex vivo</i> testing of spine specimens. Development of the protocol to build patient-specific computer models of the spine biomechanics from medical imaging data (CT, MRI and X-ray). Use of the <i>ex vivo</i> experimental data to quantify the model predictive accuracy. Develop a treatment simulation environment, where the most common interventions are properly simulated, and adverse effects (if any) predicted. Use retrospective clinical data to establish the clinical accuracy of treatment simulation environment with the actual outcome of a specific treatment in a given patient. Through these activities, the PhD student will gain skills in the area of biomechanics, in silico modelling, and orthopaedics (spine)that will make him/her employable in the areadomia but also in daviso menufecturers and daveloper of medical optimized.
Rationale and scientific background y (max 2000 chars+ max 5 relevant references)	Congenital and idiopathic scoliosis can be extremely threatening when causing severe deformity. Pain, disability, compression of internal organs, breathing and cardiac problems are just some of the consequences. Corrective surgery is the only option in extreme cases: this consists in the implantation of screws (or hooks) and rods that restore alignment in the frontal and sagittal planes. The surgeon must find a compromise between extreme correction (ideally restoring "perfect" anatomy) and avoiding damage due to compression or stretching of the spinal cord or nerves. In young patients, an additional challenge derives from the changes over time due to growth. In these cases, the surgeon can use Magnetically Controlled Growing Rods that must be mobilized at time intervals to induce progressive correction and allow natural lengthening. Currently, no evidence-based tool is available to help the surgeon plan the optimal compromise. Surgeons can only follow their experience and, to some extent, a trial-and-correct approach [1]. This clearly exposes the patient to the risk of unnecessary pain, organ damage, and sub-optimal correction.
	 A Gonzalez Alvarez, KD. Dearn, BM. Lawless, C Lavecchia, , T Greggi, DET Shepherd Design and mechanical evaluation of a novel dynamic growing rod to improve the surgical treatment of Early Onset Scoliosis. Material and Design 2018;155:334-45
Preliminary results if existing (max 1000 chars+ max 5 relevant references)	 Prof Cristofolini has extensive experience in testing <i>ex vivo</i> preparation to evaluate the biomechanical properties of human spine tissues. His group developed and validated internationally acknowledged protocols for measuring the displacements and deformations in the human spine (Ref. #1). Prof Viceconti has already developed a similar simulation environment to predict the soft tissue balance and the functional outcome of total knee replacement (Ref. #2). He also has developed patient-specific models for treatment evaluation in paediatric diseases (Ref. #3). Dr Greggi has a massive clinical experience on the subject, and her department was one of the testing centres for Magnetically Controlled Growing Rods (Ref. #4). Although with a more limited scope patient-specific simulators of spine biomechanics already exist (ie. Ref. #5), confirming the feasibility, in principle, of this project.
	 References: Palanca M, Ruspi M, Cristofolini L. Full-field strain distribution in multi-vertebra spine segments: in vitro application of digital image correlation. Med Eng Phys 2018;52:76-83 Viceconti M, Ascani Dm Mazzà C. Pre-operative prediction of soft tissue balancing in knee arthoplasty part 1: effect of surgical parameters. J Orthop Res 2019, in press. Modenese L, Montefiori E, Wang A, Wesarg S, Viceconti M, Mazzà C. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. J Biomech. 2018 May 17;73:108-118. Choi E, Yaszay B, Mundis G, Hosseini P, Pawelek J, Alanay A, Berk H, Cheung K, Ferguson J, Greggi T. Complications after magnetically controlled growing rods for early onset scoliosis: multicenter retrospective review. J Pediatr Orthop. 2017;37:588-92 Musapoor A, Nikkho M, Haghpanahi M. Finite element study on intra-op corrective forces and evaluation of screw density in scoliosis surgery. Proc Inst Mech Eng 2018;232:1245-54

Research project including methodology	The focus of the activities will be on developing a numerical model of the growing spine while undergoing correction. This PhD candidate will spend 60-70% of his/her time in the biomechanical laboratory developing <i>in vitro</i> tests (supervisor L. Cristofolini)
(max 5000 chars)	and numerical models (supervisor M. Viceconti), 30-40% of the time in the clinical settlement (Rizzoli Orthopaedic Institute) collecting and analysing retrospective patient cases. Furthermore, an international secondment of 4-5 months at a foreign clinical institution (for example, the Buda National Center for Spinal Disorders led by Prof Peter Paul Varga, in Budapest), preliminary step to develop a full scale multicentric clinical trial for the new technology after the end of the PhD project.
	WP1 – BASIC CLINICAL TRAINING. Building the understanding of spinal deformity, surgical corrections, short-and long-term outcomes and complications. This WP will be particularly intense during the 1 st year, to acquire new clinical understanding. However, during the entire duration of development and validation activities will be closely connected to the clinical environment.
	. Task 1.1: Basic knowledge: In this phase the candidate will be trained to comprehensively understand the indications and consequences for spine surgery.
	. Task 1.2: Specific training: in this phase the candidate will become familiar with the different surgical techniques, complications and failure scenarios of spinal corrective surgery. Furthermore, he/she will participate on the outpatient, hospital department to get involved and aware about the real clinical problems. Through this activity, he/she will develop a first concept of what is needed to assist spine surgeons to plan interventions and correction.
	WP2 – COLLECTION OF <i>EX VIVO</i> DATA. Within this WP the candidate will collect a set of biomechanical data from cadaveric spines from young donors. This will serve to initialize the models and identify the relevant parameters (WP3 and 3)
	. Task 2.1: <i>Development of dedicated</i> in vitro <i>tests</i> . The candidate will get familiar with a multiaxial spine simulator available at the Biomechanical lab (DIN) and of the displacement and strain measurement techniques dedicated for spine testing developed at DIN.
	. Task 2.2: <i>Ex vivo characterization of cadaveric spines</i> . At least six spine specimens will be assessed. First, high-quality calibrated CT scans will be acquired which will be used for the numerical models (WP2). The spines will then be subjected to non-destructive tests with different types of loading and kinematics, replicating the physiological range
	WP3 – PROTOCOL FOR PATIENT-SPECIFIC MODELLING
	. Task 3.1: Development of the modelling protocol on retrospective data. Initially the candidate will access retrospective imaging data of patients treated by Dr Greggi; the Rizzoli Institute default informed consent includes the permission of secondary use of clinical data in anonymised form for research. Using these data, he/she will develop the image-based modelling protocol.
	. Task 3.2: <i>Development of ad boc imaging protocols</i> : if the results obtained with retrospective data are considered insufficient, the candidate will refine the current protocols for CT and MRI so that they provide the information required to properly initialise the model. To the purpose, a few new patients, for which the imaging has been requested for clinical reasons, will be examined with this new sequences, which in any case need to involve similar effective radiation doses, and continue to provide the diagnostic information required by the standard clinical protocol.

	WP4 – EX VIVO VALIDATION OF PREDICTIVE MODELS. The candidate will use the experimental data collected in WP2, and the modelling protocol developed in WP3, to develop predictive models of the ex vivo experiments form CT data of the specimens and validate the modelling protocol by comparing the model predictions to the experimental measurements.												
	. Task 4.1: <i>Imaging and modelling of cadaver specimens</i> : before they are tested the specimens will be CT scanned with a protocol similar to that to be used <i>in vivo</i> ; water-equivalent materials will be used to obtain images comparable the clinical ones. With these data the candidate will develop a complete model for each specimen.												
	. Task 4.1: <i>Model validation</i> . The candidate will simulate for each specimen the experimental conditions and predict biomechanical quantities (displacements, forces, deformations) which are also measured during the experiment. If the comparison yields the expected predictive accuracy, the candidate will move to the next step. If not, he/she will revise the modelling protocol, the modelling assumptions, etc. Eventually it might be even necessary to revise the experimental design, and conduct new experiments, if the experimental conditions cannot be sufficiently controlled or accurately modelled.												
	 WP5 – DEVELOP TREATMENT SIMULATION ENVIRONMENT. Once the model is fully validated <i>ex vivo</i>, the candidate will develop the simulation of the various interventions available. Task 5.1: <i>Development of interventions simulation</i>: in close collaboration with the clinical specialists the candidate will develop a modelling simulation for each of the intervention of the variable. 												
	used, and/or the most complex to use optimally. . Task 5.2 <i>Validation of the intervention simulations</i> . In a few cases it might be possible to validate the intervention simulation again <i>ex vivo</i> , but in most cases we will use retrospective data relative to patients already treated by Dr Greggi team.												
				Gai	ntt ch	art							
Activity	Months =>	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30	31-33	34-36
WP 1 - CLINICAL TRAINING			1				1		1			1	
Task 1.1 - Basic knowledge													
Task 1.2 - Specific training													
WP 2 - COLLECTION OF EX VI													
Task 2.2 - Ex vivo characterizati	on of cadaveric spines												
					-			I					
Task 3.1 – Development of proto	col on retrospective data								-				
Task 3.2 – Development of ad hoc imaging protocol													
							1		1	1	1		
Task 4.1 – Imaging and modeling	g of cadaveric specimens												
Task 4.2 – Model validation	Task 4.2 – Model validation												
WP5 – DEVELOP TREATMENT SIMULATION ENVIRONMENT													
Task 5.1 – Development of interv	Task 5.1 – Development of interventions simulations											_	
Task 5.2 – Validation of intervent	ions simulations												

Innovation	There is an acute unmet need for proper planning tools in the treatment of sever
potential	scoliosis. While the biomechanics of the scoliotic spine is complex, in the last 20 years
(scientific	a massive amount of experimental and modelling work has been done, which can be
and/or	capitalised here. We thus believe there is a significant innovation potential in this
technological)	project. If reasonable predictive accuracies are achieved, after the end of the project
(max 1000 chars)	we will explore the possibility to hand over the technology to a company, or to establish
	an exploitation team without our group. In both cases, a multicentric clinical trial will
	be required to demonstrate the efficacy of this new technology when compared to the
	current standard of care.
	Meanwhile we will work to establish a planning service for Dr Greggi clinic, and for
	any other spine surgeon at the Rizzoli Institute, who is interested in using this
	technology to plan their interventions.
Expected results	In this case, the clinical impact is self-explanatory: if the technology works as expected,
and applications	and provide sufficient accuracy to be clinically informative, this could radically change
to human	the standard of care for the handling of sever scoliosis cases.
pathology and	
therapy	
(max 1000 chars)	

Available resources for the project

	Synthetic description				
Research environment	This candidate will have an engineering background. While this will facilitate				
(labs involved,	him/her in grasping the technical part of the project, some time and effort must				
background, and	be dedicated at the beginning to improve his/her understanding of the clinical				
location)	problem. This project is rooted between different and complementary				
	expertise:				
	- The group of Prof. Cristofolini (Department of Industrial Engineering)				
	will provide "training through research" in the area of biomechanics				
	and material characterization.				
	- The group of Prof. Viceconti (Department of Industrial Engineering) will provide "training through research" in the area of computational				
	The array of Dr. Creasi will previde training and experision on the				
	- The group of Dr. Greggi will provide training and supervision on the surgical procedures for the spine and on complications, and will supervise the design of the modelling strategy, and the retrospective validation.				
	This PhD candidate will enjoy this extremely stimulating interdisciplinary environment and will share his/her research time between clinics (in tight collaboration with Rizzoli Orthopaedic Institute) and biomechanics lab.				
	The Department of Industrial Engineering includes a large Biomechanics lab that is extremely active in the field of orthopaedic biomechanics. The focus of the biomechanics group directed by prof. Cristofolini within DIN is on the multi-scale biomechanical characterization of skeletal structures and orthopaedic devices, and on the integration of <i>in vitro</i> tests and numerical modelling. Furthermore, this group is acknowledged internationally for the applications of DIC to biomechanics.				
	The Head Rachis Deformation Surgery of the Rizzoli Orthopaedic Institute is nationally recognized for the treatment of severe deformity in adult and young patients. The group directed by dr Greggi is constantly developing new surgical protocols to improve treatment of young and growing patients. Comparison between different procedures and cases are routinely performed in order to continuously improve the patient's provision of care.				
Main equipment (facilities and location)	The Labs of the Department of Industrial Engineering (Via Terracini 24-28, Bologna) are equipped with the testing facilities required for this project, including:				
	- Five universal testing machines				
	- Under construction: a proprietary multiaxial simulator for				
	biomechanical testing				
	- State-of-the-art digital image correlation (DIC) system.				
	- Equipment and procedures for safe storage, preparation, testing and disposal of biological tissue specimens (both human and animal)				
	The Medical Technology Lab at the Rizzoli Institute has a long history of computational orthopaedic biomechanics research, under the supervision of Prof Viceconti. A set of workstations, simulation servers, and access to HPC resources through various local and international schemes, provide all the necessary computational power. The team has a vast library of specialised software, including 25 full licenses of the Ansys suite for finite element simulation.				

Additional funding	No significant costs are expected on behalf of Rizzoli Institute, most of the research and training costs will be covered within the Department of Industrial					
duration)	Engineering However the Medical Technology Lab of Rizzoli will make					
duration	ingineering. However, the incurcat rectinology Lab of Kizzoli will make					
	available the existing hardware and software computational resources.					
	Funding already available at DIN will cover the cost for laboratory testing					
	(synthetic and biological specimens, access to testing machines, lab					
	consumables, dedicated testing fixtures):					
	• Industrial funding on related activities (static and dynamic testing of					
	• Industrial functing of feated activities (state and dynamic testing of					
	orthopaedic implantable components): 150 000 Euro					
	• PON 2017 "Bone++" on innovative orthopaedic devices (2019-2021):					
	320'000 Euro					
	• UniBo "Proof of Concept" on a related patent: under evaluation:					
	40'000					
	• Opening MSCA IT'N "SDININER" (2018-2022) project the ESPs					
	• Oligoning MSCA TITN SFITNNER (2018-2022) project. the ESKS					
	involved in this project are developing experimental methods to					
	investigate spinal treatments such as discoplasty, and failure					
	mechanisms such as proximal junctional kyphosis. Great synergies are					
	therefore possible.					
	• Additional funding will be sought with an orthopaedic manufacturer					
	that has approached us for the exploitation of this idea					
	The complete the templotation of this idea.					
	• The CompBioMEd 2 project, which is currently under negotiation and					
	is expected to start in Ocotober with Prof Viceconti as UNIBO					
	principal investigator, offers an European HPC centre of excellent for					
	computational biomedicine. This will provide to our student					
	extraordinary opportunities for training and for access to wolrd-class					
	computational resources.					

International collaborations for the project (also in view of the Student's secondment)

	Project	Location and team
#1	CompBioMed Centre of Competence	EU project; coordination at UCL,
		London.
#2	Access to post-operative follow up	Buda National Center for Spinal
	statistical analysis for corrective spinal	Disorders, Budapest (Prof Peter Paul
	surgery	Varga and dr Aron Lazary)
#3	Mariano Vasquez	Barcelona Supercomputing Centre