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Overview

* Why Nuclear Magnetic Resonance Relaxometry?
* What is Magnetic Resonance Fingerprint (MRF) technique?
 Why Artificial Intelligence?

* Low-field MRF relaxometry Framework

* The approach
* Proof of concept

 Conclusions



Why NMR Relaxometry?

Composition and internal structure of diary products

e.g. Quality: pH Viscosity Water holding Oxidation Matrix...

can be characterized by

NMR relaxometry parameters ...

T, T, D Solid/Liquid Ratio ...




What is Magnetic Resonance Fingerprint (MRF) technique?
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Magnetic Resonance Fingerprinting - Sequence design

RF pulses: flip angle (FA) and repetition time (TR) vary according to a
pattern designed to make the magnetization evolution sensitive to
several MR parameters simultaneously.
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Magnetic Resonance Fingerprinting approach to MR parameter mapping

RF Pulse Sequence

NMR Signal
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Examples of Fingerprint Signals varying T;, T, parameters

Parameters
estimation

Simulating a dictionary with possible
evolutions given a set of NMR
parameters



Circumventing The Curse of Dimensionality in Magnetic Resonance Fingerprinting
with Deep Learning

a) 1D - 4 regions b) 2D - 16 regions c) 3D - 64 regions

The curse of dimensionality
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A deep learning approach for magnetic resonance fingerprinting: Scaling %
capabilities and good training practices investigated by simulations.
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Circumventing the curse of dimensionality in magnetic
resonance fingerprinting through a deep learning approach

The more parameters are added the bigger the dictionary becomes if no drops in o b e | oK Lot | Loonmto gt | Enco Gt |
accu racy iS wa nted. Francesco Solera®® | Gastone Castellani®© | Brian A. Hargreaves?>7 © |

Claudia Testa®© | Raffaele Lodi®®©® | Daniel Remondini**

Barbieri, M., Brizi, L., ... Testa, C., Remondini, D. A deep learning approach for magnetic resonance fingerprinting: Scaling capabilities and good training practices investigated by simulations. Physica Medica, 2021, 89,80-92.
Barbieri M, Lee Philip K, Brizi L, et al. Citcumventing the Curse of Dimensionality in Magnetic Resonance Fingerprinting through a Deep Learning Approach. NMR in Biomedicine, 2022, 35(4), e4670.



Circumventing The Curse of Dimensionality in Magnetic Resonance Fingerprinting
with Deep Learning

Circumventing the curse of dimensionality

Experimental Sighal =—p

We can train
a Neural Network

to retrieve MR parameters _»Adding parameters to be retrieved does not
given the MRF signal as input affect processing time.

Barbieri, M., Brizi, L., ... Testa, C., Remondini, D. A deep learning approach for magnetic resonance fingerprinting: Scaling capabilities and good training practices investigated by simulations. Physica Medica, 2021, 89,80-92.
Barbieri M, Lee Philip K, Brizi L, et al. Circumventing the Curse of Dimensionality in Magnetic Resonance Fingerprinting through a Deep Learning Approach. NMR in Biomedicine, 2022, 35(4), e¢4670.



Low-Field NMR Fingerprinting aided by

Artificial Intelligence

Sequence Design
and Optimization

Simulation
(MARSS)

Fingerprint
Dictionary

Laboratory
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Low-Field NMR Fingerprinting aided by
Artificial Intelligence

Sequence Design

Time between pulses (TR) -2 fixed at 1 ms

Acquisition Time - fixed at the half of TR
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MARSS™2 (MAgnetic Resonance Simulation Software)
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1) “MR Fingerprinting for partial volume fractions quantification: A simulation study”, 103° Congresso Nazionale SIF, Trento, 11-15 sept 2017.
2) “Quantification of partial voxel volume fraction in a two-component system with a short T2 component: a UTE-MR Fingerprinting simulation study”, 8° Congress

AIRMM - Italian Chapter ISMRM, Gaeta, 8-9 june 2017.



Vienu

NMR APPARATUS - SETUP panel
External Magnetic fields characterization

Load BO-B1 map B0-B1 2DFFT of ANGLE-FID

. OR
from datafile Compute

B0-B1 MAP

Min. Max.
BO range | -1000 1000

B1efi.range| 0.3 3

LOAD s>

BO B1
Inversion sizes | 400 100

Export B0 - B1 MAP

B, (efficiency)

0
By [HZ]

Spin system components = 4e+04

Samplre characterization
SAMPLE

Relaxation Time T1 (s) 0.01

Relaxation Time T2 (s) 0.008

Signal-to-Noise Ratio 1000

SETUP Apparatus
Place the Sample into the Field

EXPERIMENT SETUP PANEL - RF pulse sequence

MRF - IRBSSFP FID ANGLE CPMG IR-FID

Experiment parameters

Flip Angles Pattern LOAD FAs

TRs Pattern LOAD TRs

Inversion time (s)
Repetition Time (s)

Number of scans

RUN MRFingerprinting

OUTPUT - NMR SIGNAL

Inversion Recovery

Duration (s)
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Flip Angle Pattern
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Low-Field NMR Fingerprinting aided by Artificial Intelligence
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s~ Early challenging results...

Acquired Signal
Known T1,T2
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Low-Field NMR Fingerprinting aided by Artificial Intelligence

Bo-B1 can be considered
homogeneous within each
voxel

MRI
APPARATUS

LOW-FIELD NMR

APPARATUS HOMOGENEOUS

B, AND B,

' SPINS DO NOT EXPERIENCE




Characterization of B,-B, correlation function

2D FFT
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Low-Field NMR Fingerprinting aided by Artificial Intelligence

Acquired Signal

Simulated Signal
(using single By-B,)
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Low-Field NMR Fingerprinting aided by Artificial Intelligence

Fully Connected Neural Network design

Normalized signal intensity

Feed Forward Net - 5 fully connected layers
Rectified Linear Unit (ReLU) as the activation function for the neurons in the first 4 layers

Linear activation function was chosen for the output layer



Low-Field NMR Fingerprinting aided by Artificial Intelligence
Training strategy

Training with MARSS synthetic data

Noise Addition
(white additive Gaussian)

20’000 (T1, T2) pairs
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~3s for 1 simulation (standard PC) E
26880 spin components
Spin System ~ 2.5 hours for whole

dataset generation




training loss /

log loss MODELI (2).csv
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Experimental
H20 + CuEDTA

Sample T1(ms) T2 (ms)
CE_1 2.2 1.9

O
N

24.1 20.2
78.9 66.3

CE_7 1510 1270

Electromagnet JEOL C60 (B,=500 mT)

Spectrometer KEAIlI (Magritek, NZ)
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64 scans

TR fixed at 1 ms

~ 2.5 minutes per fingerprint




Low-Field NMR Fingerprinting aided by Artificial Intelligence

Data Analysis: Dictionary Matching Vs Neural Network Prediction

Simulated Fingerprints
(matched by Neural Network)
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Low-Field NMR Fingerprinting aided by Artificial Intelligence

Data Analysis: Dictionary Matching Vs Neural Network Prediction

Standard Dictionary Matchin
T1Ground T1Dict. T1NN _ ‘ Neural Network

| 123 |
| 241

81.0
| 301
| 730 | 720 | 713

T2 Ground T2 Dict. T2 NN

| 183 | 200 | 194
| 110 | 9.0 |

100
T1 ground

| 104 |

| 202 | 220 | 200
| 663 | 600 | 64.8
| 251 | 148 | 273
| 613 | 52 | 532

Data values in ms

T2 ground
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CONCLUSIONS Low-fle1d Magnetic Resonance

Magnetic Resonance Fingerprinting was demonstrated for low-field Relaxometry devices

Characterization of By-B, correlation function of the system is requested

A fully connected Neural Network was establish to fasten the matching process, achiving the same
performance of the standard method

Fast Relaxometry multi-parameter measurements can be performed



Low-field Magnetic Resonance

Fingerprint Further Development

Sequence Design and

Gain Sensitivity to .
Optimization

NMR Parameters

Faster and more Accurate
Increase the number of e et

encoded Parameters

Neural Network

Extend to multi-components

About diary products / companies

Self characterization of the

Portable, low-cost and low-
hardware (B, — B,)

maintainance devices (Low-field)

Fasten the acquisition
Single—sided NMR (compact and Portable devices) (real-time in the production line?)
Translation to
Fast Field Cycling (FFC) ) Automatize for specific applications
(not user dependent)




Authors have collaborated to presented studies about NMR Fingerprinting
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Thanks for your attention

Contacts and useful links

PERSONAL: leonardo.brizi2@unibo.it
https://www.unibo.it/sitoweb/leonardo.brizi2/en
https://www.researchgate.net/profile/Leonardo_Brizi






DICTIONARY

GRID sampling

T1 (ms) T2 (ms)

[2 + 200]* [2 = 200]* 20000
201 = 2000]|** 201 = 2000]** entries

*) T, and T, were incremented with steps of 1 ms;
**) T, and T, were incremented with steps of 20 ms.

Noise ~Gaussian
Residuals ~ Noise Single noise sequence

-0.01 -0.005 0 0.005 0.01 0.015
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