ModelFreeFFC and MUPen2D Software Tools
 Giovanni Vito Spinelli

Department of Mathematics, University of Bologna
giovanni.spinelli4@unibo.it

21/04/2023

ModelFreeFFC

Fast Field Cycling (FFC) NMR Technique

Fast Field Cycling Nuclear Magnetic Resonance (FFC - NMR) is a non-destructive low-field magnetic resonance technique that allows to revealing information about molecular dynamics, and it measures the spin-lattice relaxation rate, $R_{1}=\frac{1}{T_{1}}$, as a function of NMR frequency, ν ($\omega=2 \pi \nu$), over the kHz to MHz range.
This technique consists in rapidly changing the strength varying the intensity of the applied polarizing magnetic field, \boldsymbol{B}_{0}, causing the alteration of proton resonant frequency, and the measurement of R_{1} as a function of Larmor angular frequency.

Relaxation rates can be represented as linear combinations of spectral density functions of the motion modulating the interactions.
However, complex spin dynamical interactions may occur such as the Quadrupole Relaxation Enhancement (QRE) due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins $S \geq 1$.
The presence of QRE is represented by local peaks of the R_{1} profiles due to resonant phenomena, and its positions are strongly dependent on the physical and chemical nature of the sample.

$$
\begin{equation*}
R_{1}(\omega)=R_{0}+R^{H H}(\omega)+R^{N H}(\omega) \tag{1}
\end{equation*}
$$$R_{1}(\omega)$ is the acquired longitudinal relaxation rate.

[^0]\[

$$
\begin{equation*}
R_{1}(\omega)=R_{0}+R^{H H}(\omega)+R^{N H}(\omega) \tag{1}
\end{equation*}
$$

\]$R_{1}(\omega)$ is the acquired longitudinal relaxation rate.$R_{0} \geq 0$ is a constant offset that takes into account very fast correlation times.

[^1]\[

$$
\begin{equation*}
R_{1}(\omega)=R_{0}+R^{H H}(\omega)+R^{N H}(\omega) \tag{1}
\end{equation*}
$$

\]$R_{1}(\omega)$ is the acquired longitudinal relaxation rate.$R_{0} \geq 0$ is a constant offset that takes into account very fast correlation times.$R^{H H}(\omega)$ describes the longitudinal ${ }^{1} H-{ }^{1} H$ relaxation rate.

$$
\begin{equation*}
R^{H H}(\omega)=\int_{0}^{\infty}\left[\frac{\tau_{c}}{\left(1+\left(\omega \tau_{c}\right)^{2}\right)}+\frac{4 \tau_{c}}{\left(1+4\left(\omega \tau_{c}\right)^{2}\right)}\right] f\left(\tau_{c}\right) d \tau_{c} \tag{2}
\end{equation*}
$$

[^2]
FFC Mathematical Problem

$$
\begin{equation*}
R_{1}(\omega)=R_{0}+R^{H H}(\omega)+R^{N H}(\omega) \tag{1}
\end{equation*}
$$

$\square R_{1}(\omega)$ is the acquired longitudinal relaxation rate.
$\square R_{0} \geq 0$ is a constant offset that takes into account very fast correlation times.
$\square \quad R^{H H}(\omega)$ describes the longitudinal ${ }^{1} H-{ }^{1} H$ relaxation rate.

$$
\begin{equation*}
R^{H H}(\omega)=\int_{0}^{\infty}\left[\frac{\tau_{c}}{\left(1+\left(\omega \tau_{c}\right)^{2}\right)}+\frac{4 \tau_{c}}{\left(1+4\left(\omega \tau_{c}\right)^{2}\right)}\right] f\left(\tau_{c}\right) d \tau_{c} \tag{2}
\end{equation*}
$$

$\square R^{N H}(\omega)$ describes the QRE^{1} with unknown parameters $\psi \in \mathbb{R}^{6}$.

$$
\begin{align*}
& R^{N H}(\omega)=C^{N H}\left[\left(\frac{1}{3}+\sin ^{2}(\Theta) \cos ^{2}(\Phi)\right)\left(\frac{\tau_{Q}}{1+\left(\omega-\omega_{-}\right)^{2} \tau_{Q}^{2}}+\frac{\tau_{Q}}{1+\left(\omega+\omega_{-}\right)^{2} \tau_{Q}{ }^{2}}\right)+\right. \\
& \quad+\left(\frac{1}{3}+\sin ^{2}(\Theta) \sin ^{2}(\Phi)\right)\left(\frac{\tau_{Q}}{1+\left(\omega-\omega_{+}\right)^{2} \tau_{Q}^{2}}+\frac{\tau_{Q}}{1+\left(\omega+\omega_{+}\right)^{2} \tau_{Q}^{2}}\right)+ \tag{3}\\
& \left.\quad+\left(\frac{1}{3}+\cos ^{2}(\Theta)\right)\left(\frac{\tau_{Q}}{1+\left(\omega-\left(\omega_{+}-\omega_{-}\right)\right)^{2} \tau_{Q}^{2}}+\frac{\tau_{Q}}{1+\left(\omega+\left(\omega_{+}-\omega_{-}\right)\right)^{2} \tau_{Q}^{2}}\right)\right]
\end{align*}
$$

[^3]
Discrete Problem

$$
\begin{equation*}
\boldsymbol{y}=R_{0}+\mathcal{F}_{1}(\boldsymbol{f})+\mathcal{F}_{2}(\boldsymbol{\psi}) \tag{4}
\end{equation*}
$$

where
$\boldsymbol{\omega} \in \mathbb{R}^{m}$ represents the vector of the m Larmor angular velocity at which the NMRD profile is evaluated ($\omega=2 \pi \nu, \nu$ is in MHz).$\boldsymbol{y} \in \mathbb{R}^{m}$ represents the observation vector: $y_{i}=R_{1}\left(\omega_{i}\right), i=1, \ldots, m$.$\mathcal{F}_{1}(\boldsymbol{f}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and is obtained by discretizing $R^{H H}$:
$\mathcal{F}_{1}(\boldsymbol{f}) \equiv \boldsymbol{K} \boldsymbol{f}, \quad \boldsymbol{K}_{i, j}=\frac{\tau_{j}}{\left(1+\left(\omega_{i} \tau_{j}\right)^{2}\right)}+\frac{4 \tau_{j}}{\left(1+4\left(\omega_{i} \tau_{j}\right)^{2}\right)}, \quad i=1, \ldots, m$ and $j=1, \ldots, n$
Linear system of dimension $m \times n$ (usually $n>m$). τ_{j} are logarithmic uniformly distributed in the range $\left[10^{-3}-10^{1}\right] \mu \mathrm{s}$.
$\square \mathcal{F}_{2}(\boldsymbol{\psi}): \mathbb{R}^{6} \rightarrow \mathbb{R}^{m}$ is obtained by discretizing the quadrupolar component $R^{N H}$:

$$
\left.\begin{array}{rl}
\left(\mathcal{F}_{2}(\boldsymbol{\psi})\right)_{i}=\psi_{1}\left(\frac{1}{3}+\psi_{2}\left(1-\psi_{3}\right), \quad \frac{1}{3}+\psi_{2} \psi_{3},\right. & \frac{1}{3}+\left(1-\psi_{2}\right)
\end{array}\right) . ~\left(\begin{array}{c}
\psi_{4} \\
\frac{\psi_{4}}{1+\left(\omega_{i}-\psi_{5}\right)^{2} \psi_{4}^{2}}+\frac{\psi_{4}}{1+\left(\omega_{i}+\psi_{5}\right)^{2} \psi_{4}^{2}} \\
\frac{\psi_{4}}{1+\left(\omega_{i}-\psi_{6}\right)^{2} \psi_{4}^{2}}+\frac{\psi_{4}}{1+\left(\omega_{i}+\psi_{6}\right)^{2} \psi_{4}^{2}} \\
\frac{\psi_{4}}{1+\left(\omega_{i}-\left(\psi_{6}-\psi_{5}\right)\right)^{2} \psi_{4}^{2}}+\frac{1+\left(\omega_{i}+\left(\psi_{6}-\psi_{5}\right)\right)^{2} \psi_{4}^{2}}{1+\left(\omega_{4}\right.}
\end{array}\right) .
$$$\psi_{1} \equiv C^{N H}$ represents the gyromagnetic ratios and the average interaction distance of the nuclei.$\psi_{2} \equiv \sin ^{2}(\Theta)$ and $\psi_{3} \equiv \cos ^{2}(\Phi)$ with Θ and Φ the two angles accounting for the orientation of the ${ }^{1} H-{ }^{14} N$ dipole-dipole axis with respect to the principal axis system of the electric field gradient at the position of $1_{14} N$.$\psi_{4} \equiv \tau_{Q}$ represents the correlation time for the ${ }^{1} H-{ }^{14} N$ quadrupolar interaction.$\psi_{5} \equiv \omega_{-}$and $\psi_{6} \equiv \omega_{+}$are the relevant characteristic angular frequencies.

Parameter Identification Problem

The parameter identification problem can be formulated as a L_{1}-Regularized non-linear least squares problem

$$
\begin{array}{ll}
\min _{\boldsymbol{f}, \boldsymbol{\psi}, R_{0}} & \left\|\boldsymbol{y}-\left(\mathcal{F}_{1}(\boldsymbol{f})+\mathcal{F}_{2}(\boldsymbol{\psi})+R_{0}\right)\right\|_{2}^{2}+\lambda\|\boldsymbol{f}\|_{1} \\
\text { s.t. } & \boldsymbol{f} \geq \mathbf{0}, \\
& \boldsymbol{\psi} \in \mathcal{B}_{\psi}, \tag{5}\\
& R_{0} \geq 0
\end{array}
$$

where the set \mathcal{B}_{ψ} fixes the box constraints on ψ :

$$
\mathcal{B}_{\psi}=\left\{\boldsymbol{\psi}: \psi_{1} \in\left[C_{\ell}, C_{u}\right] ; \psi_{2}, \psi_{3} \in[0,1] ; \psi_{4} \in\left[\tau_{\ell}, \tau_{n}\right] ; \psi_{5}, \psi_{6} \in\left[\omega_{\ell}, \omega_{u}\right]\right\}
$$

and $\lambda>0$ is the regularization parameter.

Problem Reformulation

By introducing two auxiliary variables

$$
\boldsymbol{x}_{1} \equiv\left(\boldsymbol{f}, R_{0}\right) \quad \text { and } \quad \boldsymbol{x}_{2}=\boldsymbol{\psi}
$$

the problem can be reformulated as

$$
\begin{array}{ll}
\min _{1}, \boldsymbol{x}_{2} & \left\|\boldsymbol{y}-\boldsymbol{K}_{e} \boldsymbol{x}_{1}-\mathcal{F}_{2}\left(\boldsymbol{x}_{2}\right)\right\|_{2}^{2}+\lambda\left\|\boldsymbol{x}_{1}\right\|_{1}+\eta\left\|\boldsymbol{x}_{1}\right\|_{2}^{2} \\
\text { s.t. } & \boldsymbol{x}_{1} \in \boldsymbol{X}_{1} \tag{6}\\
& \boldsymbol{x}_{2} \in \boldsymbol{X}_{2}
\end{array}
$$

where$\boldsymbol{X}_{1} \equiv \boldsymbol{x}_{1} \geq 0$$\boldsymbol{X}_{2} \equiv \mathcal{B}_{\psi}$

$$
\boldsymbol{K}_{e}=\left[\begin{array}{ll}
\boldsymbol{K} & 1
\end{array}\right] \in \mathbb{R}^{m \times(n+1)}
$$

The last term in the minimum problem, $\eta\left\|\boldsymbol{x}_{1}\right\|_{2}^{2}$ has been introduced to ensure that $\boldsymbol{K}_{e}^{T} \boldsymbol{K}_{e}+\eta \boldsymbol{I}$ is a positive definite matrix ${ }^{2}$.

[^4]
Computational Framework

Algorithm

Set $k=0, \eta=10^{-10}$, and choose a starting guess $\lambda^{(0)}$
Repeat

1. Determine $\left(\boldsymbol{x}_{1}^{(k)}, \boldsymbol{x}_{2}^{(k)}\right)$ by solving

$$
\begin{align*}
\arg \quad & \min \left\|\boldsymbol{y}-\boldsymbol{K}_{e} \boldsymbol{x}_{1}-\mathcal{F}_{2}\left(\boldsymbol{x}_{2}\right)\right\|_{2}^{2}+\lambda\left\|\boldsymbol{x}_{1}\right\|_{1}+\eta\left\|\boldsymbol{x}_{1}\right\|_{2}^{2} \\
& \boldsymbol{x}_{1} \in \boldsymbol{X}_{1} \tag{7}\\
& \boldsymbol{x}_{2} \in \boldsymbol{X}_{2}
\end{align*}
$$

with the constrained two-blocks non-linear Gauss Seidel (GS) method ${ }^{a}$.
2. Update the regularization parameter $\lambda^{(k+1)}$ using the balancing principle ${ }^{b}$, such that

$$
\begin{equation*}
\lambda^{(k+1)}=\frac{\left\|\boldsymbol{y}-\boldsymbol{K}_{e} \boldsymbol{x}_{1}^{(k)}-\mathcal{F}_{2}\left(\boldsymbol{x}_{2}^{(k)}\right)\right\|_{2}^{2}}{\left\|\boldsymbol{x}_{1}^{(k)}\right\|_{1}} \tag{8}
\end{equation*}
$$

3. Compute $k=k+1$

Until $\left|\lambda^{(k-1)}-\lambda^{(k)}\right|<\operatorname{Tol} \lambda^{(k)}$
${ }^{a}$ L. Grippo, M. Sciandrone, On the convergence of the block non-linear Gauss-Seidel method under convex constraints. Operations research letters, 26(3), 2000
${ }^{b}$ K. Ito, B. Jin, and T. Takeuchi, A Regularization Parameter for Nonsmooth Tikhonov Regularization, SIAM Journal on Scientific Computing, vol. 33, no.3, 2011.

Gauss-Seidel Method

The constrained two-blocks non-linear Gauss-Seidel (GS) method is used for the solution of the L_{1}-regularized non-linear least squares problem (7).

2-Blocks GS method

1. Set $j=0$ and choose a starting guess $\left(\boldsymbol{x}_{1}^{(0)}, \boldsymbol{x}_{2}^{(0)}\right)$
2. for $j=0,1, \ldots$ do
3. Set $\boldsymbol{x}_{1}^{(j+1)} \in \arg \min _{\boldsymbol{z} \in \boldsymbol{X}_{1}} f\left(\boldsymbol{z}, \boldsymbol{x}_{2}^{(j)}\right)$

Truncated Newton interior-point method
4. Set $\boldsymbol{x}_{2}^{(j+1)} \in \arg \min _{\boldsymbol{z} \in \boldsymbol{X}_{2}} f\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{z}\right) \quad$ Newton Projection method
5. Set $\boldsymbol{x}^{(j+1)}=\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{x}_{2}^{(j+1)}\right)$
6. end for

Stopping criteria: $\frac{\left|f\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{x}_{2}^{(j+1)}\right)-f\left(\boldsymbol{x}_{1}^{(j)}, \boldsymbol{x}_{2}^{(j)}\right)\right|}{f\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{x}_{2}^{(j+1)}\right)} \leq$ Tol or $j>K_{\max }$

Gauss-Seidel Method

The constrained two-blocks non-linear Gauss-Seidel (GS) method is used for the solution of the L_{1}-regularized non-linear least squares problem (7).

2-Blocks GS method

1. Set $j=0$ and choose a starting guess $\left(\boldsymbol{x}_{1}^{(0)}, \boldsymbol{x}_{2}^{(0)}\right)$
2. for $j=0,1, \ldots$ do
3. Set $\boldsymbol{x}_{1}^{(j+1)} \in \arg \min _{\boldsymbol{z} \in \boldsymbol{X}_{1}} f\left(\boldsymbol{z}, \boldsymbol{x}_{2}^{(j)}\right)$

Truncated Newton interior-point method
4. Set $\boldsymbol{x}_{2}^{(j+1)} \in \arg \min _{\boldsymbol{z} \in \boldsymbol{X}_{2}} f\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{z}\right) \quad$ Newton Projection method
5. Set $\boldsymbol{x}^{(j+1)}=\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{x}_{2}^{(j+1)}\right)$
6. end for

Stopping criteria: $\frac{\left|f\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{x}_{2}^{(j+1)}\right)-f\left(\boldsymbol{x}_{1}^{(j)}, \boldsymbol{x}_{2}^{(j)}\right)\right|}{f\left(\boldsymbol{x}_{1}^{(j+1)}, \boldsymbol{x}_{2}^{(j+1)}\right)} \leq$ Tol or $j>K_{\max }$

Mathematical properties

The L_{1}-regularized non-linear least squares problem has solutions.
\square The GS method is well defined, i.e., each sub-problem has solutions.
\square The sequence $\left(\boldsymbol{x}_{1}^{(k)}, \boldsymbol{x}_{2}^{(k)}\right)$ generated by the GS method converges to critical points. Details and proofs in F. Zama et Al. An Automatic L1-based regularization method for the analysis of FFC dispersion profiles with quadrupolar peaks, 2022.

ModelFreeFFC Software ${ }^{3}$

[^5]
Data Folder

Data

	A	B	C	D	E	F
t	35	7.0795	0.03349			
$!$	30	8.157	0.04409			
1	25	9.6784	0.05154			
1	20	11.953	0.08924			
;	17	13.412	0.08856			
;	15	15.138	0.15934			
,	14	16.439	0.16977			
1	13	17.085	0.22678			
1	12	18.808	0.28652			
0	11	19.837	0.32355			
1	10	21.085	0.21049			
2	9	24.277	0.46435			
3	8	26.894	0.40882			
4	7	31.158	0.51615			
5	6	34.657	0.56455			
6	5	41.762	0.51384			
7	4	56	0.5			
8	3.4	75.713	0.47828			
9	3.3	93.86	0.94234			
0	3.2	103.91	0.9007			
1	3.15	109.29	0.81266			
2	3.10	107.14	0.91925			
3	3.05	100.97	0.69793			
4	3.0	93.648	0.73492			
5	2.9	88.166	0.77939			
6	2.8	94.887	0.96211			
7	2.7	101.65	0.7832			
8	2.6	101.08	0.76389			
9	2.55	103.77	0.76851			
0	2.50	104.85	0.83886			
1	2.45	103.44	0.81158			
2	2.40	100.19	0.93085			
3	2.35	96.555	0.80397			
4	2.3	91.754	0.63763			
-	\cdots	man	. \times. ${ }^{\text {a }}$			

Results: Parmigiano-Reggiano cheese sample ${ }^{4}$

NMRD profile with $m=48$ values with confidence intervals ranging from $+0.35 \%$ to 3.07% of the value. Quadrupolar peaks at frequencies $\left(\nu_{-}=2.1 \mathrm{MHz}, R_{1_{-}}=32.2 \mathrm{~ms}^{-1}\right)$, and $\left(\nu_{+}=2.8 \mathrm{MHz}\right.$, $R_{1+}=30.7 \mathrm{~ms}^{-1}$).

Initialization

$$
\begin{gathered}
\mathcal{B}_{\psi}=\left\{\boldsymbol{\psi}: \psi_{1} \in\left[C_{\ell}, C_{u}\right] ; \psi_{2}, \psi_{3} \in[0,1] ; \psi_{4} \in\left[\tau_{\ell}, \tau_{u}\right] ; \psi_{5}, \psi_{6} \in\left[\omega_{\ell}, \omega_{u}\right]\right\} \\
C_{\ell}=0, \quad C_{u}=10^{2}, \quad \tau_{\ell}=0, \quad \tau_{u}=10^{2}, \quad \omega_{\ell} \approx 1.8(2 \pi), \quad \omega_{u} \approx 3.2(2 \pi) \\
\boldsymbol{x}_{1}^{(0)}=\left(f^{(0)}=1, R_{0}^{(0)}=1\right) \\
\lambda^{(0)}=10^{-5} \\
\boldsymbol{x}_{2}^{(0)}=\left\{\boldsymbol{\psi}_{1}^{(0)}=\frac{2}{3}\left(\frac{\mu_{0}}{4 \pi} \frac{\gamma_{H} \gamma_{N} \hbar}{r_{N H}^{3}}\right)^{2} \approx 0.18\left[\frac{\mu s}{s^{2}}\right], \psi_{2}^{(0)}=\psi_{3}^{(0)}=0.5, \psi_{4}^{(0)}=1\right. \\
\left.\psi_{5}^{(0)}=\omega_{\ell}+0.25\left|\omega_{u}-\omega_{\ell}\right|, \psi_{6}^{(0)}=\omega_{u}-0.25\left|\omega_{u}-\omega_{\ell}\right|\right\}
\end{gathered}
$$

[^6]
Results

$\chi^{2}=7.889 \cdot 10^{-2}$
Computed parameters:

$$
\begin{gathered}
R_{0}=3.23, \quad C^{N H}=5.66, \quad \tau_{Q}=1.02 \\
\Theta=1.25, \quad \Phi=0.86, \quad \nu_{-}=2.1 \mathrm{MHz}, \quad \nu_{+}=2.8 \mathrm{MHz}
\end{gathered}
$$

Statistical Analysis

We apply the proposed method using 500 datasets obtained as

$$
\boldsymbol{y}^{\boldsymbol{\delta}}=\boldsymbol{y}+\boldsymbol{\delta}
$$

where $\boldsymbol{\delta}$ is a vector extracted with a random uniform distribution from the confidence intervals of the data.

MUPen2D

2D NMR relaxation data acquired using a conventional Inversion-Recovery (IR) experiment detected by a Carr-Purcell-Meiboom-Gill (IR-CPMG) ${ }^{5}$ pulse train:

$$
\begin{equation*}
S\left(t_{1}, t_{2}\right)=\iint_{0}^{\infty} k_{1}\left(t_{1}, T_{1}\right) k_{2}\left(t_{2}, T_{2}\right) F\left(T_{1}, T_{2}\right) d T_{1} d T_{2}+e\left(t_{1}, t_{2}\right) \tag{9}
\end{equation*}
$$

- S acquired data, at evolution times: t_{1} in IR and t_{2} in CPMG.
- $k_{1}\left(t_{1}, T_{1}\right)=1-2 e^{\left(-t_{1} / T_{1}\right)}$ and $k_{2}\left(t_{2}, T_{2}\right)=e^{\left(-t_{2} / T_{2}\right)}$
- $F\left(T_{1}, T_{2}\right)$ is the unknown distribution of longitudinal $\left(T_{1}\right)$ and transverse $\left(T_{2}\right)$ relaxation times.
- $F\left(T_{1}, T_{2}\right) \geq \ell$ where $\ell \in \mathbb{R}$.
- $e\left(t_{1}, t_{2}\right)$ represents additive noise, commonly modelled by a Gaussian distribution.

[^7]\[

$$
\begin{equation*}
\min _{\mathbf{f}}\left\{\|\mathbf{K} \mathbf{f}-\mathbf{s}\|_{2}^{2}+\sum_{i=1}^{N-1} \lambda_{i}(\mathbf{L} \mathbf{f})_{i}^{2}+\alpha\|\mathbf{f}\|_{1}\right\} \tag{10}
\end{equation*}
$$

\]

- L Discrete Laplacian Matrix
- $\lambda_{i} \geq 0, i=1, \ldots, N-1$, locally adaptive L_{2}-regularization parameters
- $\alpha>0, L_{1}$-regularization parameter.
- For fixed values λ_{i} and α, problem (10) can be written as:

$$
\min _{\mathbf{f}}\left\{\Psi_{1}(\mathbf{f})+\Psi_{2}(\mathbf{f})\right\}
$$

$$
\text { where } \Psi_{1}(\mathbf{f})=\left\|\binom{\mathbf{K}}{\sqrt{\Lambda} \mathbf{L}} \mathbf{f}-\binom{\mathbf{s}}{\mathbf{0}}\right\|_{2}^{2}, \quad \Psi_{2}(\mathbf{f})=\alpha\|\mathbf{f}\|_{1}, \quad \Lambda=\operatorname{diag}\left(\lambda_{i}\right)
$$

Efficient Algorithm: FISTA

[^8]
Approximate Regularization Parameters

$$
\begin{gather*}
\alpha^{(n)}=\frac{\delta_{n}^{2}}{2\left\|\mathbf{f}^{(n)}\right\|_{1}} \tag{11}\\
\lambda_{i}^{(n)}=\frac{\delta_{n}^{2}}{2 N\left(\beta_{0}+\beta_{p} \mathcal{P}\left(\nabla\left(\mathbf{f}^{(n)}\right)\right)_{i}^{2}+\beta_{c} \mathcal{P}\left(\boldsymbol{L} \mathbf{f}^{(n)}\right)_{i}^{2}\right)} \tag{12}
\end{gather*}
$$

where

- $\mathbf{f}^{(n)}$ approximate solution, $\delta_{n}=\left\|\mathbf{K} \mathbf{f}^{(n)}-\mathbf{s}\right\|_{2}$
- $\beta_{0} \simeq 10^{-5}$: threshold coefficient. $\beta_{p}=\beta_{c}=1$ weights.
- $\mathcal{P}(\cdot)$ is the maximum filter of size 3×3

MUPen2D Software ${ }^{7}$

[^9]
Results - Grana Padano cheese

- Measurements have been performed on a Stelar SMARtracer Relaxometer at room temperature and using an Inversion Recovery CPMG sequence with 32 IR values and 2048 CPMG. Relaxation field: 7.2 MHz .
- T1-T2 maps computed by MUpen 2D Software Tool.

Results - 1D Distributions

Download tools

HOME	SOFTware -	Howitworxs	aboutus	fotocalizay	MODELPEEFPC	
Home	difreff					\leqslant

SOFTWARE DICAM

ModelFreeFFC

Modeffreefficis a freeware standslone Matlab" tool, dereloped at the Univessity of Solkgno
 magnetic relaakition dispersion (kMMRD/ curnes obtained by fast feld cyding nuclear magnetic
 supossed to be the "mocel free" one [1].
The Software is provided 'KS 15 ; withoutwirranty of ony Wind, eeppess or implied. io no veen shall the copyrijett hobler|s| be liable tor any clam, data loss, loss of procts, damagos or cother liability
orising from the Sothoreret
Lisense Mosetifreepdrl:
Taddition to the complied standalone COI version |denetioped with the App Desianer Mathb toot, there is atso a standalose ommand line esecutable werrion, both for Windows OS and Linux OS (See SOFTWLAEE INSTALLATION pragraph). Th trol aliow

 to hawe a grod inversico, it sf findamercal to have hith-quality dizas (data without too many ourtiers or electronic based ine,
relacetion curves not correctly sampled or destated, etc.].

Relerence

I1P. Lo Moo, S. Teranora, A Divínconza, D. Chillura Martino and P. Conte. Heunitic Algorithm for the Anabysis of Fart Fiedd

ZIPPEDFOLDER WITH EXECUTABLES AND DATAFOR WINDOWS OS
\pm Nocelfree for Wiondous $05[$ ip 6559 kb$]$

LICENSE

MANUALWITHINSTALLATIONGUIDE
A. Nocelfree Nanual (.pd 1457 kb)

MUpen2D Software
MUPen2D a FREE multiple regularization Upen like tool for the inversion of 20 NUR deta.

 NatLab 202ct.

ZIPPEDFOLDER WTH EXECUTABLES ANO DATA FOR WINDOWS OS

 setofdsta.

ZIPPED FOLDER WTH EXECUTABLES ANODATA FOR LINUXOS

 set of id ta

LICENSE

\pm Licnsel.pet 113kb)
manualwithinstallationguide
\pm Hupersid dat manal [.pd 13520w]

- D.Kruk, et Al., Dynamics of solid proteins by means of nuclear magnetic resonance relaxometry, Biomolecules, 9 (11), 2019.
- G. Landi, G.V. Spinelli, F. Zama, D.C. Martino, P. Conte, P.Lo Meo, and V. Bortolotti, An Automatic L1-based regularization method for the analysis of FFC dispersion profiles with quadrupolar peaks, Applied Mathematics and Computation, 444, 2023.
- L. Grippo, M. Sciandrone, On the convergence of the block non-linear Gauss-Seidel method under convex constraints. Operations research letters, 26(3), 2000.
- K. Ito, B. Jin, and T. Takeuchi, A Regularization Parameter for Nonsmooth Tikhonov Regularization, SIAM Journal on Scientific Computing, vol. 33, no.3, 2011.
- https://site.unibo.it/softwaredicam/en/modelfree
- P. Conte et Al., Heuristic algorithm for the analysis of fast field cycling (FFC) NMR dispersion curves. Analytical Chemistry, 93 (24), 2021.
- B. Blumich. Essential NMR. Springer-Verlag, 2005.
- V. Bortolotti, G. Landi, and F. Zama. 2DNMR data inversion using locally adapted multi-penalty regularization. Computational Geosciences, (25): 1215-1228, 2021.
- https://site.unibo.it/softwaredicam/en/mupen2d

Acknowledgements

University of Bologna • Department of Mathematics
Fabiana Zama, Germana Landi.
University of Bologna • Department of Physics and Astronomy
Leonardo Brizi.
University of Palermo • Department of Agricultural, Food and Forest Sciences
P. Conte.

University of Palermo • Department of Biological, Chemical and Pharmaceutical Sciences and Technologies
P. Lo Meo.

University of Bologna • Department of Civil, Chemical, Environmental, and Material Engineering
V. Bortolotti.

Acknowledgements

University of Bologna • Department of Mathematics
Fabiana Zama, Germana Landi.
University of Bologna • Department of Physics and Astronomy
Leonardo Brizi.
University of Palermo • Department of Agricultural, Food and Forest Sciences
P. Conte.

University of Palermo • Department of Biological, Chemical and Pharmaceutical Sciences and Technologies
P. Lo Meo.

University of Bologna • Department of Civil, Chemical, Environmental, and Material Engineering
V. Bortolotti.

Thank for your attention!

[^0]: ${ }^{1}$ D.Kruk, et Al., Dynamics of solid proteins by means of nuclear magnetic resonance relaxometry, Biomolecules, 9 (11), 2019

[^1]: ${ }^{1}$ D.Kruk, et Al., Dynamics of solid proteins by means of nuclear magnetic resonance relaxometry, Biomolecules, 9 (11), 2019

[^2]: ${ }^{1}$ D.Kruk, et Al., Dynamics of solid proteins by means of nuclear magnetic resonance relaxometry, Biomolecules, 9 (11), 2019

[^3]: ${ }^{1}$ D.Kruk, et Al., Dynamics of solid proteins by means of nuclear magnetic resonance relaxometry, Biomolecules, 9 (11), 2019

[^4]: ${ }^{2} \eta=10^{-10}$. Details and proofs in G. Landi, G.V. Spinelli, F. Zama, D.C. Martino, P. Conte, P.Lo Meo, and V. Bortolotti, An Automatic L1-based regularization method for the analysis of FFC dispersion profiles with quadrupolar peaks, Applied Mathematics and Computation, 2023.

[^5]: 3^{3} https://site.unibo.it/softwaredicam/en/modelfree

[^6]: ${ }^{4}$ Data from P. Conte et Al., Heuristic algorithm for the analysis of fast field cycling (FFC) NMR dispersion curves. Analytical Chemistry, 93 (24), 2021.

[^7]: ${ }^{5}$ B. Blumich. Essential NMR. Springer-Verlag, 2005.

[^8]: ${ }^{6}$ V. Bortolotti, G. Landi, and F. Zama. 2DNMR data inversion using locally adapted multi-penalty regularization. Computational Geosciences, (25): 1215-1228, 2021.

[^9]: ${ }^{7}$ https://site.unibo.it/softwaredicam/en/mupen2d

