
Prof. Zeev Wiesman

Phyto-Lipid Biotech Lab (PLBL) 
Department of Biotech. Eng. 
Ben Gurion University of the 
Negev
Zeev.Wiesman@gmail.com

Semi-Autonomic AI LF-NMR 
Sensor for Industrial Profiling 

of Edible Oil Oxidation Status



Abstract
The evaluation of an oil’s oxidation status during industrial production is highly important with respect to 
monitoring the oil’s purity and nutritional value, during production, transportation, storage, and cooking. 
The oil and food industry is seeking a real-time non-destructive, rapid, robust, and low-cost sensor for 
nutritional oil’s material characterization. 

Towards this goal, a 1H LF-NMR relaxation sensor application based on chemical and structural profiling of 
non-oxidized and oxidized oils was developed and reported. This study deals with a relatively large-scale 
oil oxidation database which included crude data of a 1H LF-NMR relaxation curve, and its reconstruction 
into T1 and T2 spectral fingerprints, self-diffusion coefficients D, and conventional standard chemical test 
results. 

This study used a Convolutional Neural Network (CNN) that was trained to classify T2 relaxation curves into 
three ordinal classes representing three different oil oxidation levels (non-oxidized, partial oxidation and 
high level of oxidation). Supervised learning was used on the T2 signals paired with the ground-truth labels 
of oxidation values as per conventional chemical lab oxidation tests. The test data results (not used for 
training) show a high classification accuracy (95%). The proposed AI method integrates a large training 
set, a LF-NMR sensor, and Machine Learning (ML) program fits well the requirements of the oils and food 
industry and can be further developed for many other applications with emphasis of petroleum industry.

Semi-Autonomic AI LF-NMR Sensor for Industrial Prediction of Edible Oil Oxidation Status
Tatiana Osheter , Salvatore Campisi Pinto , Cristian Randieri , Andrea Perrotta , Charles Linder & Zeev Weisman*



Aim: 
To Develop a Facile Industrial AI-based Semi-Autonomic NMR Sensor Application to 
Rapidly Predict Oil-rich Food Products Safety and Quality.

An Efficient Diagnostic Tool to Support Decision Makers in Food Industry

R&D:
Phase I – TD NMR sensorial 2D T1-T2 & D Chemical and Morphological 
Fingerprinting Pattern

Phase II – TD NMR sensor Application for Determination of Oxidation Composition 
and Structural Fingerprints Changes

Phase III – AI-based Semi-Autonomic NMR Sensor Application for Profiling of Oil 
Oxidation Status



INTRODUCTION
● Low field 1H NMR can generate 

relaxation times in less than 1 minute, by 
monitoring relaxation of 1H magnetic 
spin after excitation

● With Inverse Laplace Transformation 
processing, relaxation curves can be 
transformed into T2 spectra

● T2 in previous studies – shows 
chemical and structural changes 
during oil oxidation

● Prior knowledge is needed to read these 
spectra, and processing takes time.

● Goal of our study - to develop AI 1H LF-
NMR relaxation sensor for real-time 
evaluation of edible oil oxidation to fit 
the requirements of food industry to 
produce optimal food products 
without oil oxidation.



Scheme of triacylgycerol oil structure and segmental motion 
assigned by segmental rigidity mobility tests 

Effect of oils chemical composition and structure on LF-NMR T2
relaxation curves. Linseed oil, olive oil and castor oil having different 
profile of unsaturated fatty acid and therefore different of structural 
organization, show different rate of proton relaxation curve.



*Intelligent TD NMR sensor (principles and 
practice)
• Chemical and structural signature determination
• TD NMR guide for improved structure and texture
• Generation of big structure and texture signature 

Pattern Recognition (PR) database
• Machine Learning (ML) - PR Modeling of plant-
based Milk & Meat signature recognition
• Semi-Autonomic TD NMR sensor Decision 
Support System (DSS) for Safety & Health Value



Relaxation Mechanisms

§ After irradiation ceases, not only do the population of the states revert to a
Boltzmann distribution, but also the individual nuclear magnetic moments begin to
lose their phase coherence and return to a random arrangement around the z axis.

§ The return of the equilibrium of the net magnetization is called “relaxation process”
§ During relaxation, electromagnetic energy is retransmitted: this RF emission is

called the NMR signal.
NMR spectroscopy record this process!!!

§ There are two types of relaxation process : T1(spin-lattice relaxation) & T2(spin-
spin relaxation)



Phase I - TD NMR Sensor
1H LF-NMR Relaxation Signals Collections & Chem. Composition & Physical Structure

Effect of chem. 
composition

&

Physical

Structure



Given: An image with missing pixels

Reconstruction result

The goal: Estimate the values of  the missing 
pixels by 2D interpolation

The Challenge: Very high ratio of missing pixels, 
standard near-neighbor interpolation scheme 
will fail

PDCO based Solution
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Where A is wavelets Dictionary
w is the 2D wavelets coeff. 
Vector x is the image pixels 
Vector J is a row reduced identity matrix
b is the vector of known pixels value
D is a diagonal positive matrix 

The 1D and 2D  of T1 and T2 relaxation graphics 
required novel signal data analysis 

& 
intelligent computing approach  for solving challenging 

inverse problems in NMR Data processing

* Consideration of SNR – Signal to Noise Ratio
** Optimization of L1/L2 regularization parameters

# PDCO - Primal Dual Interior method for Convex 
Objectives (Saunders, 2001; Berman et al 2013)

Inverse Laplace Transformation Solution for NMR SPARS Data based on 
PDCO  

I -



Using optimal regularization parameters, PDCO solver produce more detailed and accurate 1D T1 / T2 
&  2D T1-T2 Structural Fingerprints/Signature in comparison to other available spectral solution 
(WinDXP & CONTIN) (confirmed by simulation of results of real data)

* Based on Resende et al 2018,2020; JAOCS 

Phase I - PLBL Contribution for Optimization of ILT 
data processing 



Peak T1[ms] T2[ms] Dictionary

1 94 53 Glycerol

2 191 135 Double bands

3 437 344 Aliphatic Chain 

4 1003 766 Tail

Demonstration of Segmental Motion TD NMR Sensor 
Fingerprint/Signature of Linseed Oil using PDCO Solver

Linseed oil chemical
composition

FAs %
16:0 5
16:1 1
18:0 4
18:1 20
18:2 15
18:3 55

* Based on Resende et al 2019; JLST 



OIL OXIDATION

● Poly-unsaturated fatty 
acids (PUFA, includes Ω3), 
while considered beneficial 
to cardiovascular and 
neurological health, is 
sensitive to oxidation and 
creates carcinogenic by-
products

● For this reason, PUFA-rich 
linseed oil is used in our 
study of monitoring 
oxidation

● 120 hours thermal 
oxidation induced by 
heating and air

● Proton T2 relaxation 
analysis of oil samples in 
LF-NMR

● Industry standard 
methods: peroxide value, 
para-anisidine value, 
TOTOX and self-diffusion 
coefficient D

PUFA PARADOX TESTING

285
Unique

samples tested

3400
Data files



2D T1-T2 chemical and morphological TD NMR sensor relaxation 
FINGERPRINTS/SIGNATURE of linseed oil before (A) and after 120 hours of 
thermal oxidation at 80˚C plus air pumping (B). 
Each peak corresponds to a proton population motion in different segment of the 
linseed oil.



Correlation between LSO self-diffusion coefficient  and T2 at 25, 40, 60, 
80, 100, 120 °C during 168 h. (25 and 40 °C designated as Slow Ox and 
60, 80, 100, 120 °C designated as Rapid Ox) 

Correlation between LSO self-diffusion coefficient (proton 
mobility in LF-NMR sensor) and conventional standard 
chemical tests (p-anisidine test) induced by thermal 
oxidation for different time (0, 25, 40, 60, 80, 100, 120 hrs). 
Using these tests, three levels of oxidation were classified: 
GREEN – GOOD OIL; YELLOW – MEDIUM OIL; 
RED – VERY BAD OIL 

Correlations of parameters corresponding 
with oxidation



Catergory
NMR coefficient 

D range (*10-9 
m2/s)

Chem. standard 
PV range 

(mmol/kg)
Total samples

‘Good’ > 0.03 < 20 126

’Fair’ 0.02 - 0.03 20 - 50 77

‘Bad’ ≤ 0.02 ≥ 50 187

Criteria for dividing oil samples to the following three categories: 
‘Good’, ‘Fair’ and ‘Bad’. 



Fingerprinting / Signature Analysis



Machine Learning Model Concept

Training and testing system for machine learning: oil samples (1) are analyzed via LF-NMR and conventional lab 
methods (2) these are combined into a data-frame of inputs and targets (3) for supervised learning via CNN (4); deep 
convolution neural network (DCNN) output i.e. classification of T2 signals into oxidation classes (5) are benchmarked 
against ground truth measurements in order to asses prediction accuracy and to fine-tune the system in a series of 
recursive cycles until satisfactory accuracy is achieved. Having concluded system fine-tuning and training, the trained 
CNN is ready for deployment.



System set up, a typical workflow where a drop of oil is scanned with a LF-NMR 
magnometer; in the next step the CNN uses the T2 signals as an input and return 
the oil oxidation class as output. 

Convolution Neural Network (CNN)



LF NMR T2 relaxation time of thermal induced linseed oil samples oxidation. Each line 
color represents from top to bottom T2 relaxation time (0hr, 12hr, 24hr, 48hr, 96hr, 120hr). 
(AI machine differentiates between lines much better than human eyes/brain)



Accuracy and Loss function over a typical training session, values are 
estimated over both training and validation data.

Accuracy and loss functions for 30 different convolutional neural network (CNN) training sessions. (A) refers to the validation set; it shows how
accuracy and loss evolve over time; typically accuracy increases and loss decreases over epochs. (B) shows the final performances on the testing set
(a subset of data that was not used for training). Data indicate that both validation and testing performances remain homogeneous over multiple ( n
= 30) randomly initiated training sessions, indicating that the CNN is properly tuned, the architecture is appropriate for the data, and performances
are replicable.



Oxidation class
Bad Fair Good Overall

Number of repetitions (n) 30 30 30 30
Support (n of samples) 126 77 187 390
Total number of tests 3780 2310 5610 11,700

Precision (%) (median, [IQR 1]) 97% [87%, 0.98%] 88% [84%, 90%] 94% [93%, 96%] 93% [87%, 96%]
Recall (%) (median, [IQR 1]) 98% [96%, 100%] 77% [59%, 83%] 97% [96%, 98%] 96% [83%, 98%]
F1-score (median, [IQR 1]) 0.96 [0.91, 0.98] 0.81 [0.69, 0.86] 0.96 [0.95, 0.97] 0.95 [0.86, 0.96]

Convolutional neural network test performances by oxidation class.

1 IQR = Interquartile range.

The precision of identifying Good, Fair and 
Bad oil is 94%, 88%and 97%. In average, the 
classification accuracy of our model is 96%

Supervised learning to train a CNN for 
classifying 
linseed oil T2 relaxation curves into three 
classes
that reflect three oil oxidation levels 
(determined via standard methods) –
Good/Medium/Bad





FUTURE PLANS
● Further improving accuracy (>96%) by 

further machine training.
● Applying specific modified AI CNN 

model to other industrial fields and 
processes (“Petroleum”). 

● Industrial pilot demonstration.



Acknowledgements
Collaborators:
Prof. Cristian Randieri –
eCampus U
Prof. Charles Linder – BGU
Prof. Niva Shapira – AAC
Dr. Ofer Levi - OPU
Dr. Salvador Campisi-Pinto –
BGU
Dr. Yisrael Parmet -BGU
Prof. Michael Saunders -
Stanford U
Dr. Brian Hills - UK
Prof. Robert Glaser - BGU
Dr. Luiz Alberto Colnago - Brazil
Dr. Dimitri Mogliansk - BGU
Mrs. Sharon Hazan - BGU
Dr. Mark Karpasas – BGU

Sponsors:
Ormat Technologies
Israeli Ministry of 
Science and 
Technology & Space
Israeli Ministry of 
Energy and Water
Israeli Ministry of 
Environment 
Protection
Israeli Authority of 
Innovation
Good Food Institute 
(GFI)

PLBL members:
Prof. Zeev Wiesman
Dr. Janna 
Abramovich
Dr. Maysa T Resende
Tatiana Osheter
Shoshana Kravchik
Alexey Osheter
Meir Cohen
Paula Berman
Nitzan Meiri
Natan Ayalon
Rotem Zamir
Eng. Project Students



Appendix



Effect of oils chemical composition and structure on LF-NMR T2
relaxation curves. Linseed oil, olive oil and castor oil having 
different profile of unsaturated fatty acid and therefore different 
of structural organization, show different rate of proton relaxation 
curve.

Scheme of triacylgycerol oil structure and segmental motion
assigned by segmental rigidity mobility tests.

Chemical and morphological time domain NMR sensor 2D T1-T2
relaxation times of linseed oil before (A) and after 120 hours of 
thermal oxidation at 80˚C plus air pumping (B). Each peak 
corresponds to a proton population motion in different segment of 
the linseed oil.



Training and testing system for machine learning: oil samples (1) are analyzed via LF-NMR and 
conventional lab methods (2) these are combined into a data-frame of inputs and targets (3) for supervised 
learning via CNN (4); deep convolution neural network (DCNN) output i.e. classification of T2 signals into 
oxidation classes (5) are benchmarked against ground truth measurements in order to asses prediction 
accuracy and to fine-tune the system in a series of recursive cycles until satisfactory accuracy is achieved. 
Having concluded system fine-tuning and training, the trained CNN is ready for deployment.



Catergory
D range (*10-9 

m2/s) PV range 
(mmol/kg) Total samples

‘Good’ > 0.03 < 20 126

’Fair’ 0.02 - 0.03 20 - 50 77

‘Bad’ ≤ 0.02 ≥ 50 187

Criteria for dividing oil samples to the following three 
categories: ‘Good’, ‘Fair’ and ‘Bad’. 



LF NMR T2 relaxation time of thermal induced linseed oil samples oxidation. Each line 
color represents from top to bottom T2 relaxation time (0hr, 12hr, 24hr, 48hr, 96hr, 120hr).



System set up, a typical workflow where a drop of oil is scanned with a LF-
NMR machine; in the next step the CNN use the T2 signal as an input and 
return the oil oxidation class as output. 
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TD NMR signatures for Linseed oil at different oxidation levels 
resulting from different oxidation treatments for the duration of 0, 24, 
48, 72, 120 hr. Different oxidation levels in different colors; each 
signature results from the algebraic summary of various experimental 
repetitions. Top panel shows the signatures as normally rendered by the 
NMR machine; Low panel is a synthesis of all Linseed experiments 
included in the lage database. 
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Convolutional neural network (CNN) 
architecture including input layer, 
convolution layers, pooling layer, output 
layer, and classification (Conv1D = 
Conversion 1D).



2022 IBM - AI for Quality Test



Intelligent LF-NMR Sensor in the field of Biodiesel



Saturated FAs

Unsaturated FAs

Saturated FAMEs

Unsaturated FAMEs

Chemical structure of representative common 
FAs and FAMEs





CPMG Pulse Sequence – T2

( )ò= 222 dTt/T-)expF(TM(t)

Transform Laplase Inverse

T2 T2T2



Monitoring of Biodiesel 
Process

Demonstration of T2 Relaxation of FAMEs in LF-NMR 

Mobility –Fluidity

Viscosity



• 1H LF-NMR spin-spin (T2) relaxometry can be applied to differentiate
between populations in complex systems.

• Triacylglycerols (TAGs) are the most common biodiesel source. They create
FAMEs in a transesterification reaction:

• The analyzed T2 distribution of TAGs is a bimodal distribution, but there
isn't a certainty about the origin of the peaks. 2 hypotheses:

– inhomogeneous relaxation rates for the protons
along the side chains,

or

– inhomogeneous organization of TAGs in the liquid
with intermolecular interactions.

Additional Relevant Background



• The physical properties of biodiesel are determined by the length of the
hydrocarbon chain, the degree of unsaturation, and the effect of
molecular packing.

• The liquid structure of FAMEs affects the physicochemical properties of
the biodiesel including viscosity, density, fluid dynamics and low
temperature operability. These properties are of high importance to the
field of biodiesel.

18:018:3



These differences are attributed to a methyl ester versus a carboxylic head group, which 
are responsible for the intermolecular interactions of one chain with its neighbor.

CH
3

1H LF-NMR T2 distributions at 
different temperatures



Long- and short-range order through 
X-ray measurements

Long spacing

Short spacing MO molecules have a larger fluidity, because as the 
temperature is increased, MO molecules separate both 
longitudinally and transversely from one another.



Both materials exhibit Arrhenius 
dependence of the form:

with apparent activation energies, 
ΔEapp, of 27.0 and 19.5 KJ/mol for the 
OA and MO molecules, respectively.

Translational motion through 1H LF-NMR diffusiometry

The motion for long rod-like molecules 
is restricted to linear molecular 
movement; therefore, similar r values 
for the OA and MO molecules are to be 
expected.

η measurements 
were used to 
calculate r from 
the Stokes-Einstein 
formula under a 
slip boundary 
condition.



Rotational (segmental) motion through 13C HF-NMR relaxometry

Translational diffusion is probably initiated by the ends of the molecules. In the case of OA, 
dimers of two hydrogen-bonded molecules would move by the flipping of both tails on the 
dimer. MO molecules, on the other hand, would find available spaces for translational 
movement by very vigorous rotation of the tail, but also by wagging of the head.

The correlation time is the average time it takes for a molecule to progress through 
one radian via random molecular tumbling (Brownian motion). 



CH
3

1H LF-NMR T2 distributions at different temperatures

The response of the peaks with temperature suggests an increase in the mobility of 
different protons along the chain, or a change in the molecular organization
towards the higher mobility peak.

Therefore the peaks are the result 
of two distinct mobility 
populations of the protons on 
the chain. 



Bearing in mind that the mobility of the molecules is the direct outcome of their 
morphological structure, the differences in the molecular arrangement of OA and 
MO can be proposed by monitoring the differences in T2 distributions and peak area 
in response to a gradient of temperatures. 

This can be observed from the similarities in T2 distributions in relation to melting 
point. In this way, the large change in relative contribution of the peaks for MO 
suggests a less dense packing compared to OA and a reduction in 
intermolecular interactions. 



Table 1. Melting points used for the materials. Tms are within ±2 K from the melting
temperatures reported in the literature.

Common name Chain type Tm [K]
Methyl caprate 10:0 258a

Methyl laurate 12:0 278b

Methyl myristate 14:0 293c

Methyl palmitate 16:0 303c

Methyl stearate 18:0 313c

Methyl arachidate 20:0 318d

Methyl palmitoleate 16:1 238a

Oleic acid 18:1 Acid 288a

Methyl oleate 18:1 253b

Methyl linoleate 18:2 238b

Methyl linolenate 18:3 228c

a(Knothe & Dunn, 2009)
b(Knothe, 2005a)
c(Handbook of chemistry and physics2007)
d(The lipid handbook2007)

18:1 18:1 Acid

10:0

20:0

18:3 18:2 18:1

Chain/tail Lenght and Unsaturation effect on FAME Packing



Short- and long-range spacing of 18 carbons chains and saturated FAMEs.

aMeasurements performed at ambient temperature
bMeasurements performed at Tm+5K

Results: X-Ray 

Long spacing

Short spacing

18 carbons chain  
at 298 K

Short spacing 
[nm]

Long  spacing 
[nm]

18:1 Acid 0.459 2.383
18:1 0.460 2.531

Saturated FAMEs  
at Tm+15 K

Short spacing 
[nm]

Long  spacing 
[nm]

10:0 0.459a 1.70b
12:0 0.461a 2.08
14:0 0.459 2.27
16:0 0.462 2.53
18:0 0.455 2.64
20:0 0.457 2.83



Self-diffusion coefficient, D, versus (A) absolute and (B) specific temperature distances from Tm. 

Results: 1H LF-NMR relaxometry
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Segmental motion (tc
-1) of the carbon atoms at different positions of (A) saturated FAMEs

(10:0, 16:0 and 18:0) at Tm+15 K and (B) unsaturated FAMEs (18:1, 18:2 and 18:3) at 298 K.

Results: 13C HF-NMR relaxometry



Results: 1H LF-NMR relaxometry

Combined 1H LF-NMR T2 distributions of (A) 18:1 Acid and (B) 18:1 at different temperatures. 
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Combined 1H LF-NMR T2 distributions of FAMEs at 313 K.
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Results: 1H LF-NMR relaxometry
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Conclusions
• Both the peaks assignment for 1H LF-NMR T2 distributions of FAMEs and

the model for their liquid crystal-like arrangement in the liquid phase were
confirmed.

• NMR and especially LF-NMR relaxometry would be an excellent tool for
monitoring changes in molecular packing and/or weak interactions of fatty
acids and FAMEs.

• This new application is of high prospective to the field of biodiesel, and to
other research and applied disciplines with the potential of studying
numerous physicochemical- and organizational-based properties,
processes and mechanisms of alkyl chains.





T2 relaxation times of saturated & unsaturated FAMEs at 40°C



T2 of Bio FAME Mix at 40°C
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Soy

Mustard

Rapeseed

Corn

Linseed

FAME Mustard Rapeseed Soy Corn Linseed
16:0 3.64 5.61 10.54 6.27 5.07
18:0 1.37 1.89 4.76 2.61 3.26
18:1 22.52 57.69 29.95 28.48 20.28
18:2 21.36 25.21 48.41 60.82 14.89
18:3 13.73 8.05 4.95 0.32 56.08
20:0 0.69 0.53 0.55 0.33 -
20:1 6.15 1.01 0.35 - -
22:0 0.43 - 0.50 - -
22:1 30.11 - - - -
μ 4.85 4.18 4.05 3.91 3.57
IV 118.42 114.68 122.34 130.16 189.16
CN 50.00 49.20 47.32 45.97 32.38

μ=kinematic viscosity [mm^2/s]
IV= iodine value [giodine/100g]
CN=cetane number

A CB



Peroxidation – LF-NMR of 18:3 at 30°C
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Biodiesel Standards
The various parameters 
specified in standards 
can be divided into 
oil/petrodiesel

physical properties, 
and process- related 

properties.
The first category 

comprises of parameters 
that largely depend on 

the FA/FAME
composition of the 

chosen oil or quality of 
the petrodiesel fuel.

The second category can 
be controlled by 

changing the reaction 
conditions.





CN, Cetane Number; MP, Melting Point; KV, Kinematic Viscosity; OS, Oxidative Stability; BP,
Boiling Point; SG, Specific Gravity
1Knothe, 2008
2Husain et al., 1993
3Clements, 1996
4Knothe and Steidly, 2005

Oil/FAME Related Physical Properties



Moser B.R., 2008. Influence of blending canola, palm, soybean, and sunflower oil FAME on fuel properties of 
biodiesel. Energ. Fuel 22: 4301–4306.

FAME Composition (wt %) of Canola (CME), Palm (PME), and Soybean (SME)

Fuel Properties of CME, PME, and SME and Comparison with ASTM D6751&EN 14214



Transesterification process related Properties

•Total Glycerine  = Free Glycerine+ 0.255MAG + 0.146DAG +0.103TAG

Both standards require the use of traditional Gas Chromatograph (GC) technique.

GC requires the completion of the reaction followed by tedious purification and preparation protocols.



LF-NMR Monitoring of TE
LR-NMR advantages: Non-destructive; rapid; accurate;
reliable and low cost detection.

* Low resolution is limited to distinguish between species
but is sufficient to differentiate between classes of
components.



Combustion & Emission -
Parameters in Focus:

Flow
Liquid FAME  viscosity
Pase transition
Liquid FAME 
Distillation/Vaporisation
NOx
Oxygen Content/Stability

FAME Self Organization –
Packaging
Analytical Study Tools:
Spectrosopy (NMR; FTIR; 
Raman)
XRD
Microscopy (SEM; TEM)



FAME profiles and calculated viscosities of 6  biodiesels samples

Flow - Viscosity




