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Semi-Autonomic AI LF-NMR Sensor for Industrial Prediction of Edible Oil Oxidation Status

Tatiana Osheter, Salvatore Campisi Pinto, Cristian Randieri, Andrea Perrotta, Charles Linder & Zeev Weisman”

The evaluation of an oil's oxidation status during industrial production is highly important with respect to
monitoring the oil's purity and nutritional value, during production, transportation, storage, and cooking.
The oil and food industry is seeking a real-time non-destructive, rapid, robust, and low-cost sensor for
nutritional oil's material characterization.

Towards this goal, a 'H LF-NMR relaxation sensor application based on chemical and structural profiling of
non-oxidized and oxidized oils was developed and reported. This study deals with a relatively large-scale
oil oxidation database which included crude data of a 'H LF-NMR relaxation curve, and its reconstruction
into T, and T, spectral fingerprints, self-diffusion coefficients D, and conventional standard chemical test
results.

This study used a Convolutional Neural Network (CNN) that was trained to classify T, relaxation curves into
three ordinal classes representing three different oil oxidation levels (non-oxidized, partial oxidation and
high level of oxidation). Supervised learning was used on the T, signals paired with the ground-truth labels
of oxidation volues as per conventlonol chemlcol lab OX|ddt|on tests The test dota results (not used for

training) sh ey ge training
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Aim:
To Develop a Facile Industrial Al-based Semi-Autonomic NMR Sensor Application to

Rapidly Predict Oil-rich Food Products Safety and Quality.

An Efficient Diagnostic Tool to Support Decision Makers in Food Industry /
R&D: /
Phase | - TD NMR sensorial 2D T1-T2 & D Chemical and Morphological ‘

Fingerprinting Pattern

Phase Il - TD NMR sensor Application for Determination of Oxidation Composition
and Structural Fingerprints Changes

Phase lll — Al-based Semi-Autonomic NMR Sensor Application for Profiling of Oil
Oxidation Status
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INTRODUCTION

600

monitoring relaxation of 'H magnetic
spin after excitation

With Inverse Laplace Transformation e g /
processing, relaxation curves can be /
transformed into T2 spectra 4

T2 in previous studies — shows
chemical and structural changes
during oil oxidation

Low field 'H NMR can generate _ ool
relaxation times in less than 1 minute, by £ ™

N

500

a0k 420ms

Prior knowledge is needed to read these
spectra, and processing takes time.

Goal of our study - to develop Al 'H LF- %

Intensity[nu)

NMR relaxation sensor for real-time
evaluation of edible oil oxidation to fit
the requirements of food industry to

produce optimal food products ° °
without oil oxidation.
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Effect of oils chemical composition and structure on LF-NMR T,
relaxation curves. Linseed oil, olive oil and castor oil having different
profile of unsaturated fatty acid and therefore different of structural
organization, show different rate of proton relaxation curve.
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*Intelligent TD NMR sensor (principles and
practice)

* Chemical and structural signature determination
* TD NMR guide for improved structure and texture

e Generation of big structure and texture signature
Pattern Recognition (PR) database

* Machine Learning (ML) - PR Modeling of plant-
based Milk & Meat signature recognition

* Semi-Autonomic TD NMR sensor Decision
Support System (DSS) for Safety & Health Value




Relaxation Mechanisms

= After irradiation ceases, not only do the population of the states revert to a
Boltzmann distribution, but also the individual nuclear magnetic moments begin to
lose their phase coherence and return to a random arrangement around the z axis.

= The return of the equilibrium of the net magnetization is called “relaxation process”

= During relaxation, electromagnetic energy is retransmitted: this RF emission is
called the NMR signal.

NMR spectroscopy record this process!!!

= There are two types of relaxation process : T1(spin-lattice relaxation) & T2(spin-

spin relaxation)




!H LF-NMR Relaxation Signals Collections & Chem. Composition & Physical Structure
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Inverse Laplace Transformation Solution for NMR SPARS Data based on W
PDCO

The 1D and 2D of T1 and T2 relaxation graphics

required novel signal data analysis PDCO based Solution
&
intelligent computing approach for solving challenging mlnH DWH
inverse problems in NMR Data processing 2

Where A is wavelets Dictionary
w is the 2D wavelets coeff.

: : . . , . v — Vector x is the image pixels
len: An image with [TISSINS plels st.:Aw—x=0 Vector J is a row reduced identity matrix

Jx=>b b is the vector of known pixels value
D is a diagonal positive matrix

50

Reconstruction result

100
150
200

250 [N

The goal: Estimate the values of the missing
pixels by 2D interpolation

The Challenge: Very high ratio of missing pixels,
standard near-neighbor interpolation scheme
will fail

# PDCO - Primal Dual Interior method for Convex * Consideration of SNR — Signal to Noise Ratio
Objectives (Saunders, 2001; Berman et al 2013) ** Optimization of L1/L2 regularization parameters



Using optimai regularization parameters, PDCO solver produce more detailed and accurate 1D T1 /T2
& 2D T1-T2 Structural Fingerprints/Signature in comparison to other available spectral solution
(WinDXP & CONTIN) (confirmed by simulation of results of real data)

(1) MR Signal collection — (ZI?TDaii/,Prl());fls)sTg - (22”) Improved ILT
T2 Relaxation Curve S _ oA PDCO LY/ L.z -1D
T2 Mapping T2 Mapping
S(t) ,’/" \\\\\
1900 ! ‘ 1\
> L2 PDCOLIL2
) = ~ ST
= | i gl
“ - ‘\ ) : ,‘ ‘ ‘\ ‘ [’
" ‘ | I L
205 05 1 5 | ?0\\\ ! g ,’ﬁ
i 2 4 (2b) Data Processing —
(3) Lipid Products Dictionary - j , " 3 PDCO L1/L2 ITL —
Time domain (TD) Peak Assignment i I | L 2D T1-T2 Mapping
based on m ' l i Increased peak generation
Lipid Segmental Motion el and resolution
* Based on Resende et al 2018,2020; JAOCS T e 100 e

.
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Demonstration of Segmental Motion TD NMR Sensor W
Fingerprint/Signature of Linseed Oil using PDCO Solver
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Linseed oil chemical

c | composition
——_— FAs %
' M 16:0 5
- 16:1
18:0 4
18:1 20
Peak T,[ms] T,[ms] Dictionary 182 15
1 94 53 Glycerol 18:3 55
2 191 135 Double bands
3 437 344 Aliphatic Chain
4 1003 766 Tail

* Based on Resende et al 2019; JLST



OIL OXIDATION W

PUFA PARADOX TESTING

« Poly-unsaturated fatty e 120 hours thermal

acids (PUFA, includes Q3), oxidation induced by
while considered beneficial heating and air

to cardiovascular and e Proton T2 relaxation

neurological health, is analysis of oil samples in
sensitive to oxidation and LF-NMR

creates carcinogenic by-  Industry standard

products : methods: peroxide value,
o For this reason, PUFA-rich para-anisidine value,

linseed oil is used in our TOT2Y and self-diffsion
study of monitoring coefficient D
oxidation




2D T,4-T, chemical and morphological TD NMR sensor relaxation
FINGERPRINTS/SIGNATURE of linseed oil before (A) and after 120 hours of

thermal oxidation at 80°C plus air pumping (B).

Each peak corresponds to a proton population motion in different segment of the

linseed oil.
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Correlation between LSO self-diffusion coefficient and T, at 25, 40, 60,
80, 100, 120 °C during 168 h. (25 and 40 °C designated as Slow Ox and

60, 80, 100, 120 °C designated as Rapid Ox)

Correlations of parameters corresponding

0.05

0.04 4

e
[=3
>

D (E-9m*m/s)

with oxidation W

Correlation between LSO self-diffusion coefficient (proton
mobility in LF-NMR sensor) and conventional standard
chemical tests (p-anisidine test) induced by thermal
oxidation for different time (0, 25, 40, 60, 80, 100, 120 hrs).
Using these tests, three levels of oxidation were classified:
GREEN - GOOD OIL; ;
RED - VERY BAD OIL

° e 25°C

» 40°C

4 60°C

80°C

= 100 °C

e 120°C

0 200 400 600 800 1000 1200 1400 1600

T, (ms)



Criteria for dividing oil samples to the following three categories:

‘Good’, ‘Fair’ and ‘Bad’.

NMR coefficient  pom standard

D range (*10-9
Catergor 8 PV range Total samples
Sy m2/s) (mmol/l%g) S
‘Good’ >(0.03 <20 126
"Fair’ 0.02-0.03 20-50 77

‘Bad’ <0.02 > 50 187

I



Fingerprinting / Signature Analysis

B.rowser . ‘ﬁl
Fingerprinting: =2
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(1)Oil samples  (2) Chemical analysis (3) Data (4) CNN model
Induced Oxidation _/Raw LF-NMR Signals
H " Fee
g »|  Apply LF-NMR Encoder Decoder

~ pesoRsasonans | pesmdmeions .
input - \ gy Convolutional, | Neural |
- —» S —_— i
= U ' Layers | | Network !
getg | J | |

Apply lab-analysis ==

v

'Measured Oxidation Levels

Classification of oil

(5) DCNN Output

oxidation levels

Training and testing system for machine learning: oil samples (1) are analyzed via LF-NMR and conventional lab
methods (2) these are combined into a data-frame of inputs and targets (3) for supervised learning via CNN (4); deep
convolution neural network (DCNN) output i.e. classification of T, signals into oxidation classes (5) are benchmarked
against ground truth measurements in order to asses prediction accuracy and to fine-tune the system in a series of
recursive cycles until satisfactory accuracy is achieved. Having concluded system fine-tuning and training, the trained

CNN is ready for deployment.




Convolution Neural Network (CNN)

System set up, a typical workflow where a drop of oil is scanned with a LF-NMR
magnometer; in the next step the CNN uses the T2 signals as an input and return
the oil oxidation class as output.

(a) Sample

‘ﬁ

(b) NMR acquisition (c) Classification engine (d) Results
FAMRT, Convolutional Not .omdlze.d .(Good).
slgna collecton ‘ Neural Partially oxidized (Fair)

Network Highly oxidized (Bad)
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LF NMR T, relaxation time of thermal induced linseed oil samples oxidation. Each line
color represents from top to bottom T, relaxation time (Ohr, 12hr, 24hr, 48hr, 96hr, 120hr).
(Al machine differentiates between lines much better than human eyes/brain)
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7~
// Accuracy and Loss function over a typical training session, values are
/A estimated over both training and validation data.

(A) o (B) .
Validation Testing

1.00 1 1.00 4
g 0.75+ 0.75 1
e
=
D 0.501 0.50 Accuracy
§ Loss
"(7; N -
L 0:25 025
0.00 0.00 A

0 50 100 150 200
Training epochs

Accuracy and loss functions for 30 different convolutional neural network (CNN) training sessions. (A) refers to the validation set; it shows how
accuracy and loss evolve over time; typically accuracy increases and loss decreases over epochs. (B) shows the final performances on the testing set
(a subset of data that was not used for training). Data indicate that both validation and testing performances remain homogeneous over multiple ( n
= 30) randomly initiated training sessions, indicating that the CNN is properly tuned, the architecture is appropriate for the data, and performances

are replicable. ° e

I



Convolutional neural network test performances by oxidation class.

Oxidation class

Bad Fair Good Overall
Number of repetitions (n) 30 30 30 30
Support (n of samples) 126 77 187 390
Total number of tests 3780 2310 5610 11,700
Precision (%) (median, [IQR '])  97% [87%, 0.98%] 88% [84%, 90%] 94% [93%, 96%] 93% [87%, 96%]
Recall (%) (median, [IQR ']) 98% [96%, 100%] 77% [59%, 83%)] 97% [96%, 98%] 96% [83%, 98%]
F1-score (median, [IQR 1]) 0.96 [0.91, 0.98] 0.81 [0.69, 0.86] 0.96 [0.95, 0.97] 0.95 [0.86, 0.96]

'IQR = Interquartile range.

O 8
S%%ervised learning to train a CNN for

c.:Iassifyin.g , , The precision of identifying Good, Fair and
linseed oil T2 relaxation curves into three Bad oil is 94%, 88%and 97%. In average, the
clesses classification accuracy of our model is 96%

that reflect three oil oxidation levels
(determined via standard methods) —

Good/ Bad
O
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FUTURE PLANS

Further improving accuracy (>96%) by
further machine training.

Applying specific modified Al CNN
model to other industrial fields and
processes (“Petroleum”).

Industrial pilot demonstration.
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Effect of oils c e%omposition and structure on LF-NMR T,
relaxation curves. Linseed oil, olive oil and castor oil having
different profile of unsaturated fatty acid and therefore different
of structural organization, show different rate of proton relaxation
curve.

—linseed
—olive

— castor

relative intensity

time [sec]

Chemical and morphological time domain NMR sensor 2D T;-T,
relaxation times of linseed oil before (A) and after 120 hours of
thermal oxidation at 80°C plus air pumping (B). Each peak
corresponds to a proton population motion in different segment of
the linseed oil.

Scheme of triacylgycerol oil structure and segmental motion
assigned by segmental rigidity mobility tests.
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Training and testing system for machine learning: oil samples (1) are analyzed via LF-NMR and
conventional lab methods (2) these are combined into a data-frame of inputs and targets (3) for supervised
learning via CNN (4); deep convolution neural network (DCNN) output i.e. classification of T, signals into
oxidation classes (5) are benchmarked against ground truth measurements in order to asses prediction
accuracy and to fine-tune the system in a series of recursive cycles until satisfactory accuracy is achieved.
Having concluded system fine-tuning and training, the trained CNN is ready for deployment.

(1) Oil samples (2) Chemical analysis (3) Data (4) CNN model
Induced oxidation B ,'Row LF-NMR signals
I' = o =l =

v SR ____Encoder __ . Decoder. __

input ' Convolutional : ! Neural :

- e | | . :

targets s ] o B

» Apply lab-analysis [

N - -
\Measured Oxidation levels

Calssification of oil

(5) DCNN Output

oxidation levels
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Criteria for dividing oil samples to the following three
categories: ‘Good’, ‘Fair’ and ‘Bad’.

D range (*10-9 PV ran

Catergory m?2/s) (mmol /ég) Total samples
‘Good’ >0.03 <20 126
"Fair’ 0.02 - 0.03 20 -50 77

‘Bad’ <0.02 > 50 187

I



LF NMR T, relaxation time of thermal induced linseed oil samples oxidation. Each line
color represents from top to bottom T, relaxation time (Ohr, 12hr, 24hr, 48hr, 96hr, 120hr).
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System set up, a typical workflow where a drop of oil is scanned with a LF-
NMR machine; in the next step the CNN use the T, signal as an input and
return the oil oxidation class as output.

(a) Sample

“

(b) NMR acquisition (c) Classification engine (d) Results
LF-NMRT, Convolutional Not‘vomdlze.d '(_Good) A
signal collection - Neural Partially oxidized (Fair)
Network Highly oxidized (Bad)
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Cicer arietinum seeds (Hummus) TD NMR Sensor Structure Signature

Intensity[nu]
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Machine Learning for
Oil Safety-Quality classification

based on
Convolutional Neural Networks (CNN)
built on Tensor Flow technology

I :
TensorFlow e
_—

(a) Sample (b) NMR acquisition (c) Classification engine (d) Results
LE-NMR T Convolutional Not oxidized (Good)
- 2 i ’ ) »od (Fair - - . -
(0” signal collection taaral J‘.”MH/(.N.L“' e Al NMR Sensor for Edlble 0|I OXIdatIOI‘I
- Network Highly oxidized (Bad)

3. Classification Engine

medium

2. NMR Acquisition 4. Resultsin seconds
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0
o

o

200 250 300 350 400 450
Samples' signatures, 512 data points (adimensional units)
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Intensity (adimesional uni
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Principal signatures, 512 data points (adimensional units)

TD NMR signatures for Linseed o0il at different oxidation levels
resulting from different oxidation treatments for the duration of 0, 24,
48, 72, 120 hr. Different oxidation levels in different colors; each
signature results from the algebraic summary of various experimental
repetitions. Top panel shows the signatures as normally rendered by the
NMR machine; Low panel is a synthesis of all Linseed experiments
included in the lage database.
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NMR T1-T2 chemical and structural MAPPING OF ANIMAL MEAT
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NMR Precision Teslameter 1
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Convolutional neural network (CNN)
architecture including input layer,
convolution layers, pooling layer, output
layer, and classification (Conv1D =

Conversion 1D).
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Intelligent LF-NMR Sensor in the field of Biodiesel
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Chemical structure of representative common
FAs and FAMEs

Saturated FAs Saturated FAMEs
Unsaturated FAs Unsaturated FAMEs

linoleic acid

linolenic acid methyl linolenate

(



Schematic of Biodiesel Production Path

Vegetable Oil/
Animal Fat/Waste
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Demonstration of T, Relaxation of FAMEs in LF-NMR

Transesterification
H.C—00C—R1 CH,—00C—R1 H.c—OH
NaOH \
HC—00C—R2 + 3CHOH ——— CH,—00C—R2 + HC—OH
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Additional Relevant Background

'H LF-NMR spin-spin (T,) relaxometry can be applied to differentiate
between populations in complex systems.

Triacylglycerols (TAGs) are the most common biodiesel source. They create
FAMEs in a transesterification reaction:

The analyzed T, distribution of TAGs is a bimodal distribution, but there
isn't a certainty about the origin of the peaks. 2 hypotheses:

— inhomogeneous relaxation rates for the protons
along the side chains,

or

— inhomogeneous organization of TAGs in the liquid
with intermolecular interactions.
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The physical properties of biodiesel are determined by the length of the
hydrocarbon chain, the degree of unsaturation, and the effect of
molecular packing.

The liquid structure of FAMEs affects the physicochemical properties of
the biodiesel including viscosity, density, fluid dynamics and low
temperature operability. These properties are of high importance to the
field of biodiesel.
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Figure 1 Combined 'H low field (LF)-NMR T, distributions of (A) OA and (B) MO at different temperatures. The relative contributions of
each peak, in relation to other peaks and intrinsic T, values, are shown on each plot. For the same temperature, the peaks in MO have larger T,
values compared to OA. As temperature increases, a shift in the T, of the peaks is observed towards higher values, and the relative concentration
of the peaks changes, especially for MO.
-

These differences are attributed to a methyl ester versus a carboxylic head group, which
are responsible for the intermolecular interactions of one chain with its neighbor.
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Figure 4 X-ray spectra of OA and MO measured using (A) XRD and (B) SAXS at 298 K. The peak at around 0.14 nm™ (26=19.8°) is sharp
for both materials, whereas the peak at around 0.03 nm™ (20 =4.2% is very broad and difficult to resolve, especially for the MO sample. SAXS:
small angle X-ray scattering; XRD: X-ray diffraction.
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Table 1 Short- and long-range spacing, d, of OA and MO

at 298 K

; doa [nm] dmo [nm]
Short spacing (XRD) 0459 0460
Long spacing (SAXS) 2.383 2531

N

Long spacing _
“Long spacing measured at 263 K.
doa and dyo are the short- and long-range spacings of OA and MO, respectively.
SAXS: small angle X-ray scattering; XRD: X-ray diffraction.

2517°

MO molecules have a larger fluidity, because as the
temperature is increased, MO molecules separate both
longitudinally and transversely from one another.
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Translational motion through *H LF-NMR diffusiometry
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Figure 6 Self-diffusion coefficient, D, of OA and MO at various
temperatures. MO exhibits larger D values compared to OA for all
the temperatures, meaning that the translational movement of the
ester is considerably larger than that of the acid.

Both materials exhibit Arrhenius
dependence of the form:

D = Doexp(~AE a4, /RT)
with apparent activation energies,

AE,pp, of 27.0 and 19.5 KJ/mol for the
OA and MO molecules, respectively.

Table 2 Dynamic viscosity, n, of MO and apparent
hydrodynamic radius, r, of MO and OA according to

temperature

TIK] Nmo [mPa s] mo [nm] roa” [nm]
288 697 0339

293 6.03 0332 0315
298 527 0336

303 466 0339 0337
308 4.14 0340

313 371 0341 0330
318 334

323 303 0344 0337
328 276

333 252 0345 0345
338 232

343 215 0348 0.364
348 1.99

353 185

358 172

“Calculated using the dynamic viscosities given in [19].
nmo is the dynamic viscosity of MO; rmo and roa are the apparent

hydrodynamic radii of MO and OA, respectively.

The motion for long rod-like molecules

is restricted to linear molecular

movement; therefore, similar r values
for the OA and MO molecules are to be

expected.

N measurements
were used to
calculate r from
the Stokes-Einstein
formula under a
slip boundary
condition.
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Rotational (segmental) motion through 13C HF-NMR relaxometry ﬁ

The correlation time is the average time it takes for a molecule to progress through
one radian via random molecular tumbling (Brownian motion).
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Figure 7 Segmental motion of OA and MO at different temperatures. Segmental motion through the reciprocal of the effective correlation
time, 1/1, of each carbon can be calculated from T,, measured by "C high field (HF)-NMR. OA was measured at 298 K, and MO at 298, 318, 338,
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Translational diffusion is probably initiated by the ends of the molecules. In the case of OA,
dimers of two hydrogen-bonded molecules would move by the flipping of both tails on the
dimer. MO molecules, on the other hand, would find available spaces for translational
movement by very vigorous rotation of the tail, but also by wagging of the head.




1H LF-NMR T, distributions at different temperatures ﬁ
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53% 47% 298 K
103ms,, r\ pmie Table 4 Comparison of phase transition points of OA and
57% 43% 288 K MO
0.01 0.1 1 10 Crystallization point [K] Melting point [K] Boiling point® [K]
T2l¢) OA 2777 [14] 286.0° [14] 4960 [42]
The response of the peaks with temperature suggests an increase in the mobility of MO 2325 [43] 253.1 [35] 4740 [42]

different protons along the chain, or a change in the molecular organization

towards the higher mobility peak.

“Measured at 1.333 kPa.
PThe melting point for the a polymorph is referenced.



Bearing in mind that the mobility of the molecules is the direct outcome of their

morphological structure, the differences in the molecular arrangement of OA and
MO can be proposed by monitoring the differences in T, distributions and peak area
in response to a gradient of temperatures.

This can be observed from the similarities in T, distributions in relation to melting
point. In this way, the large change in relative contribution of the peaks for MO
suggests a less dense packing compared to OA and a reduction in
intermolecular interactions.
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Chain/tail Lenght and Unsaturation effect on FAME Packing

Table 1. Melting points used for the materials. T_s are within +2 K from the melting
temperatures reported in the literature.

10:0 Common name Chain type T, [K]
] . Methyl caprate 10:0 2582
! 20:0 Methyl laurate 12:0 278b 18:1 18:1 Acid

o | Methyl myristate 14:0 293¢ Oy°H
' | Methyl palmitate 16:0 303¢

Methyl stearate 18:0 313¢c

Methyl arachidate 20:0 318d

Methyl palmitoleate 16:1 2383

Oleic acid 18:1 Acid 2882

Methyl oleate 18:1 253b

Methyl linoleate 18:2 238P

Methyl linolenate 18:3 228¢

3(Knothe & Dunn, 2009)

b(Knothe, 2005a)

‘(Handbook of chemistry and physics2007)
d(The lipid handbook2007)




Results: X-Ray

Short- and long-range spacing of 18 carbons chains and saturated FAMEs.

18 carbons chain  Short spacing Long spacing
at 298 K [nm] [nm]

18:1 Acid 0.459 2.383

18:1 0.460 2.531
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Results: *H LF-NMR relaxometry
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Results: 13C HF-NMR relaxometry
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Results: *H LF-NMR relaxometry
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Results: *H LF-NMR relaxometry
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Conclusions

Both the peaks assignment for H LF-NMR T, distributions of FAMEs and
the model for their liquid crystal-like arrangement in the liquid phase were
confirmed.

NMR and especially LF-NMR relaxometry would be an excellent tool for
monitoring changes in molecular packing and/or weak interactions of fatty
acids and FAMEs.

This new application is of high prospective to the field of biodiesel, and to
other research and applied disciplines with the potential of studying
numerous physicochemical- and organizational-based properties,
processes and mechanisms of alkyl chains.
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T, relaxation times of saturated & unsaturated FAMEs at 40°C
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T, of Bio FAME Mix at 40°C M

A C
7000/ Linseed 877m 1682ms .
385ms /3% /\22%
5%
6000 Corn I FAME Mustard Rapeseed Soy Corn Linseed
gg;ms . 16:0 3.64 561 10.54 6.27 507
- 330ms 0 I ;??/6”‘3 180 137 1.89 4.76 2,61 3.26
3% \ o 18:1 22.52 57.69 29.95 28.48 20.28
A . 18:2 21.36 25.21 48.41 60.82 14.89
5 oy 754ms 18:3 13.73 8.05 4.95 0.32 6.08
; 4000 730/ 1296ms . . . . . 5 .
£ 385ms 22% 20:0 0.69 0.53 0.55 0.33 -
% 5% 1\ . 20:1 6.15 1.01 0.35 - -
£ 3000 22:0 0.43 ] 0.50 - -
Rapeseed 662m 591 30.11 i ) ) )
76% 1163ms : :
ool 260ms e 200 T 4.85 418 4.05 3.91 3.57
2%, Wi 118.42 11468 12234 13016  189.16
Mustard . s‘] CN 50.00 49.20 47.32 4597 32.38
1000 74% /= 1189ms 1 p=kinematic viscosity [mm~2/s]
303ms 20% IV= iodine value [giodine/100g]
. 6% /\ , 2\ CN=cetane number
10" 10" 10'

T2[sec]

Increased T2 relaxation times -> Higher Mobility in Magnetic Field
Peak A- Less mobile part of FAMEs; Peak B- Mid mobile part; Peak C- Most mobile part/TAIL

Increased T2 relaxation times -> Lower Viscosity - FLUIDITY



Peroxidation — LF-NMR of 18:3 at 30°C
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Biodiesel Standards

Properties

Physical Properties
Kinematic viscogi®®

il nTemp. (90% vol. recovered), °C

Distillation Temp. (95% vol. recovered), °C
Cloud point, °C

shpoint, (closed cup), °C

Dendity, at 15°C, kg’
Iodine YWlue, gI¥100g
Linolenic ac¥

ontent, %% moliraol

Lubricity, HFRR at 60°C, |

Elements related to transesterification reacag

FAME content, % 1/

Methanol content, % rol/raol

Water and sediment, % vol.

Carbon residue, 100% saraple, % rafm

Carbon residue, 10%, distillation residue, % mira

Growp I metak (Na+K), ppra
Group II metals (Ca+Mg), pra
Sulfated ash, % ra/m

MAG content, % raolimol
DAG content, ¥ moliraol

TAG content, ¥ moliraol

Free Glycerine, % raolfraol
Total Glycerine, % raoliranl
Total contamination, mg/kg
Carryover elements

Copper sirip corrosion

Sulfur content, ppm

Acid number, rag KOHfg

Phosp horus content, % rafm
Polycyclic aromatic hydrocarhons, % rafm

stillation Temp. (% viv recovered at 250 °C), °C

4 doublebonds, ¥ molirol

ASTM D6751

EN 14214

I

The various parameters
specified in standards
can be divided into
oil/petrodiesel
physical properties,
and process- related
properties.

The first category
comprises of parameters
that largely depend on
the FA/FAME
composition of the
chosen oil or quality of
the petrodiesel fuel.

The second category can
be controlled by
changing the reaction
conditions.
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Oil/FAME Related Physical Properties

FAME CN! MP! KVi4o°c)y OS! BP:dtorr) SG?*@155°C) Lubricity?
[°C]  [mm?¥s] [h]  [°C] [kg/m’] [m]

Methyl Palmitate (859 (30 | [4.38 >24] (139 867 360

(16:0)

Methyl Stearate 101} |39 5.85 >241 | 155 367 300

(18:0) — — — — — —

Methyl Oleate 593 |-19.3 H.51 2.79 | 154 878 316

(18:1)

Methyl Linoleate {382 |-35 | [3.65 0.94] | 150 890 228

(18:2)

Methyl Linolenate |22.7 |-32 3.14 0 - - 184

(183) . J . J . J . J . J e —

Methyl Ricinoleate 37.38 -5.85 [15.29 0.67 177 - 183

(18:1-OH)

CN, Cetane Number; MP, Melting Point; KV, Kinematic Viscosity; OS, Oxidative Stability; BP,
Boiling Point; SG, Specific Gravity

1Knothe, 2008

2Husain et al., 1993

3Clements, 1996
4Knothe and Steidly, 2005




FAME Composition (wt %) of Canola (CME), Palm (PME), and Soybean (SME)

CME PME SME
C12:0 0.3
C14:0 1.1
Cl16:0 4.6 41.9 10.5
C18:0 2.1 4.6 4.1
C20:0 0.7 0.3
C22:0 0.3
Cle6:1 0.2 0.2
C18:1 64.3 41.2 24.1
C18:2 20.2 10.3 53.6
C18:3 7.6 0.1 1.7
> SFAME“ 1.7 48.2 14.6
Y. UFAME® 92.3 51.8 85.4

Fuel Properties of CME, PME, and SME and Comparison with ASTM D6751&EN 14214

ASTM D6751 EN 14214 CME PME SME
CN 47 min 51 min [48—56 48—56

AH (KT kg™ 3730039870 37400 38320¢ 072040080
CP (°C) report ﬂ e |+ 1

PP (°C) —0 £ | 15 £ | 01
CEPP (°C) variable? [=7=]h 12 E1 [(2=

OSI (h) 3 min 6 min 6.4 L 0.1 0.3 £ 0.1 50 L0.1

v (mm2s) 1.9—6.0 3.5—5.0 442 +0.23 4.58 + 0.01 4.12 +0.01
ub (em) o= 1] 5]
AV (mg of KOH g~ 1) 0.50 max 0.50 max 0.01 £ 0.01 0.01 £ 0.01 0.04 4+ 0.01
IV 120 max 110 54 134

Moser B.R., 2008. Influence of blending canola, palm, soybean, and sunflower oil FAME on fuel properties of
biodiesel. Energ. Fuel 22: 4301-4306.



Transesterification process related Properties

Properties ASTM D6751 EN 14214
B100 B100
Properties related to transesterification reaction
[FAME content, % m/m - 98.5 min.
Methanol content, % mol/mol 0.2 max. 0.2 max.
Water and sediment, % vol. 0.05 max. 0.05 max.
Group I metals (Na+K), ppm 5 max. 5 max.
Group II metals (Ca+Mg), ppm 5 max. 5 max.
Sulfated ash, % m/m 0.02 max. 0.02 max.
MAG content, % mol/mol - 0.8 max.
DAG content, % mol/mol - 0.2 max.
TAG content, % mol/mol - 0.2 max.
Free Glycerine, % mol/mol 0.02 max. 0.02 max.
Total Glycerine, % mol/mol 0.24 max. 0.25 max.
Total contamination, mg/kg - 24 max.

*Total Glycerine = Free Glycerine+ 0.255MAG + 0.146DAG +0.103TAG

Both standards require the use of traditional Gas Chromatograph (GC) technique.

GC requires the completion of the reaction followed by tedious purification and preparation protocols.
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LF-NMR Monitoring of TE

LR-NMR advantages: Non-destructive; rapid; accurate;
reliable and low cost detection.

* Low resolution is limited to distinguish between species
but is sufficient to differentiate between classes of
components.
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Diesel Engine
(Compression Ignition)

fuel injector Combustion & Emission -

Parameters in Focus:

Flow

Liquid FAME viscosity
Pase transition

Liquid FAME
Distillation/VVaporisation
NOx

Oxygen Content/Stability

FAME Self Organization —
Packaging

Analytical Study Tools:
Spectrosopy (NMR; FTIR;
Raman)

XRD

Microscopy (SEM; TEM)

Hot-Flame Region:
NOx & Soot



Flow - Viscosity

FAME profiles and calculated viscosities of 6 biodiesels samples

Sample® FAME composition’ [%0] Calculated

(Cig.1. Viscosities

Ciso Ciso Cis1 Cizz Ciss Caoo Caoa Cazi om [mm?/s]
Lmseed 56 46 182 154 561 - - - - 3.60
S0y 108 36 25¢ 534 55 04 04 04 - 3.99
Canola 48 16 |63.7 203 72 06 13 - - 425
Olive 106 28 | 773 74 06 04 - - - 4.45
el Mustard 1.7 1.0 98 138 129 08 62| 514 - 552
.,., M; Castor 10 11 30 39 - - - - |o4|[1376

POLYUNSATURATED



%




