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Program

Compactness is a crucial ingredient in variational problems since it guarantees,
for instance, that minimizing or Palais-Smale sequences admit convergent subse-
queces in the function space where the problem is set. In this way, compactness
allows to find critical points of the energy functional associated to the problem.
A typical manifestation of the lack of compactness is that such sequences are
bounded but not pre-compact. Lack of compactness can be caused by different
reasons and may require different tools to be overcome.

In this course, we will look for H1-solutions to some semilinear elliptic prob-
lems of the form −∆u+q(x)u = |u|p−2u, where compactness may fail due to the
unboundedness of the domain or the (super)critical growth of the nonlinearity.
More precisely, concerning the problem in RN with subcritical nonlinearity,

• for q ≡ 1, we will find a radial solution exploiting the symmetries of the
problem, via the Principle of Symmetric Criticality by Palais;

• for q unbounded and non-radial, we will find a solution working in a smaller
space where compactness is restored;

• for q bounded and non-radial, we will find a solution via the Concentration-
Compactness Principle by Lions.

We will then consider the case with the nonlinearity having critical or super-
critial growth. In particular,

• we will prove the existence of extremal functions for the Sobolev embed-
ding H1(RN ) ↪→ L2∗(RN ), and prove non-existence in bounded domains;

• in bounded domains, we will study existence for the Brezis-Nirenberg prob-
lem;

• in a ball, under Neumann boundary conditions, we will find a radial solu-
tion to the supercritical Lin-Ni-Takagi problem.
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