

Corso di Dottorato - 2019/2020

-z(4) A DOOST TO Higgs Physics: new regimes at high energy

<u>Silvia Biondi</u> University & INFN of Bologna <u>silvia.biondi@cern.ch/silvia.biondi@bo.infn.it</u>

Course outline

• Theory reminder

• Higgs boson production and decay modes

• Higgs boson discovery by ATLAS and CMS

O Higgs boson mass measurement by ATLAS and CMS

Overview of ATLAS and CMS analyses about Higgs

• Signal/background discrimination techniques • boosted regimes • multivariate analysis and deep neural network

• Signal extraction techniques **O** likelihood and test statistic • CLs method

• ttH analysis: an example

Silvia Biondi - Corso di Dottorato - AA 2019/2020

- tagging, large-radius jets substructure, re-clustering

Higgs boson: mass measurement ,

Higgs boson mass measurement: strategy

\neq Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s=7}$ and 8 TeV with the ATLAS and CMS **Experiments**

Why it's important:

- predicted;

$H \rightarrow \gamma \gamma$

Strategy:

- CMS uses the same analysis procedure for the measurement of the Higgs boson mass and couplings
- ATLAS implements separate analyses for the <u>couplings</u> and for the **mass**:
 - classifies events in a manner that reduces the expected systematic uncertainties in m_{H} .
- narrow resonant signal peak with several hundred events per experiment above a large continuum background;
- different categories depending on the signal purity and mass resolution to improve sensitivity.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• With m_H known, all properties of the SM Higgs boson, such as its production cross section and partial decay widths, can be

• Increasingly precise measurements have established that all observed properties of the new particle, including its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.

Higgs boson mass measurement: statistical analysis

NB!!

of the two channels by the individual experiments; • almost no effect on the results.

Aximisation of the profile-likelihood ratios:

 $H \rightarrow \gamma \gamma$

diphoton invariant mass

• signal PDFs: derived from MC samples;

• background PDFs: obtained directly from the fit to the data.

Important to perform a mass measurement that is as independent as possible of SM assumptions

 $\mu_{ggF+t\bar{t}H}^{\gamma\gamma}$

• three signal-strength scale factors: reducing the dependence of the results on assumptions about the Higgs boson couplings and about the variation of the σxBR with the mass;

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• only minor differences in the parameterisations used for the present combination compared to those used for the combination

- $\Lambda(\alpha) = \frac{\hat{L}(\alpha, \hat{\theta}(\alpha))}{\hat{L}(\hat{\alpha}, \hat{\theta})}$
- α = parameters of interest
- θ = nuisance parameters NPs (those corresponding to systematic uncertainties, the fitted parameters of the background models, and any unconstrained signal model parameters not relevant to the particular hypothesis under test)

 $\hat{\alpha}, \hat{\theta}$ = unconditional maximum likelihood estimates of the best-fit values for the parameters

 θ = conditional maximum likelihood estimate for given parameter values a.

constructed using signal and background probability density functions (PDFs) that depend on the discriminating variables:

- $H \rightarrow ZZ^* \rightarrow 4l$ four-lepton invariant mass
- signal PDFs: derived from MC samples;
- background PDFs: combination of MC and data control regions.

$$\mu_{\mathbf{VBF+VH}}^{\gamma\gamma} \quad \mu^{4\mathbf{I}}$$
5
29.01.2020

Higgs boson mass measurement: results

- scale factors and the H \rightarrow yy background function parameters, which are profiled;
- systematic uncertainty determined by subtracting in quadrature the statistical uncertainty from the total uncertainty.

combined overall signal strength: $\mu = 1.24^{+0.18} - 0.16$

$m_{H} = 125.09 \pm 0.24 \text{ GeV} = 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (sys)} \text{ GeV}$

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• Profile-likelihood fits to the data are performed as a function of m_H and the signal-strengths $(\mu_{ggF+t\bar{t}H}^{\gamma\gamma}, \mu_{VBF+VH}^{\gamma\gamma}, \mu^{4I})$;

• statistical uncertainty determined by fixing all nuisance parameters to their best-fit values, except for the three signal-strength

Higgs boson mass measurement: results

Results interpretation • Compatibility of the signal strengths from ATLAS and CMS is evaluated through:

 $\lambda^{\text{expt}} = \mu^{\text{ATLAS}} / \mu^{\text{CMS}} \qquad \lambda_{\text{F}}^{\text{expt}} = \mu_{\text{ggF+t\bar{t}H}}^{\gamma\gamma \text{ATLAS}} / \mu_{\text{ggF+t\bar{t}H}}^{\gamma\gamma \text{CMS}}$

• each ratio individually taken to be the parameter of interest, with all other NPs profiled, including the remaining two ratios for the first two tests.

• Correlation between the signal strength and the measured mass is explored with 2D likelihood scans as functions of μ and $m_{\rm H}$.

• The three signal strengths are assumed to be the same:

$$\mu_{ggF+t\bar{t}H}^{\gamma\gamma} = \mu_{VBF+VH}^{\gamma\gamma} = \mu^{4l} = \mu$$

• the ratios of the $\sigma_{\rm prod} \times BR$ are constrained to the SM predictions.

• Assuming that the negative log-likelihood ratio $-2\ln\Lambda(\mu, \mathbf{m}_{\mathbf{H}})$ is distributed as a χ^2 variable with two degrees of freedom, the 68% confidence level (CL) confidence regions are shown.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Higgs boson mass measurement: systematic uncertainties

combination:

• \sim 300 NPs: ~100 fitted parameters describing the shapes and normalisations of the background models in the H \rightarrow yy channel; • remaining ~ almost 200 NPs, most correspond to experimental or theoretical systematic uncertainties.

How to treat them:

- impact of groups of NPs is evaluated starting from the contribution of each individual NP to the total uncertainty:
 - \circ defined as the mass shift $\delta m_{\rm H}$ observed when re-evaluating the profile-likelihood ratio after fixing the NP in question to its best-fit value increased or decreased by 1 standard deviation (σ) in its distribution;
- impact of a group of NPs is estimated by summing in quadrature the contributions from the individual parameters.

The largest systematic effects are related to the determination of the energy scale of the photons, followed by those associated with the determination of the electron and muon momentum scales.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Treatment and understanding of systematic uncertainties is an important aspect of the individual measurements and their

 $\bullet \bullet \bullet \bullet \bullet \bullet$

Overview of ATLAS and CMS analyses about Higgs

Precision measurements of the properties of the Higgs boson are an important test of the SM

- Yukawa coupling strengths are free parameters in the SM and do not explain the observed pattern of fermion masses;
- not understood why the Higgs boson mass is near the electroweak scale, since it is not protected in the SM from large quantum corrections;
- development of many beyond the SM (**BSM**) theories that can alter the properties of the Higgs boson.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Rare productions and decays?

\Rightarrow **Properties**:

- **o** mass
- spin and parity
- couplings
- width
- **o** lifetime

\therefore Measurements:

- inclusive cross-section
- differential cross-section
- Simplified Template X-Section
 - 29.01.2020

HL-LHC

Higgs boson mass measurement: new results

PLB 784 (2018) 345

ATLAS

2In(A)

 $H \rightarrow ZZ^* \rightarrow 4l$

$$H \to \gamma \gamma$$

Strategy $H \rightarrow ZZ \rightarrow 4I$: • similar to $H \rightarrow 4l$ analysis: ○ 110 < m_{4l} < 135 GeV; **• 4 categories**: 4e, 2e2µ, $2\mu 2e$ and 4μ

- $0.105 < m_{yy} < 160 \text{ GeV};$

- maximisation of the profile-likelihood ratio;
- Likelihood based on Higgs mass;
- O combination with Run 1 **data** (7-8 TeV, 25 fb⁻¹)

$m_{\rm H} = 124.97 \pm 0.19$ (stat) ± 0.13 (sys) GeV

* generated from the likelihood distribution Λ with NPs fixed at the best fit value obtained on data and the POI fixed to SM hypothesis

 \mathbf{O} · ·

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Higgs boson cross-section measurement: inclusive

PRD 101 (2020) 012002

ATLAS

$H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu$

up to 79.8 fb⁻¹

Strategy

O each analysis performed independently with many event categories: • more than 60 categories per experiment;

• likelihood function defined as the product of the likelihoods of each input analysis; **O simultaneous fit to data**, with xsec of each processes as POI;

• measurement of the signal strength of the Higgs production process.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

CMS EPJC 79 (2019) 421 35.9 fb⁻¹

Systematic uncertainties treatment

o systematic uncertainties affecting multiple analyses are modelled with common NPs;

• experimental uncertainties treated as uncorrelated;

• theory uncertainties in the signal (QCD) corrections and PFD choice) affect the exp. signal yields of each production and decay process

• modelled by a common set of NPs; • background modelling uncertainties

treated as uncorrelated.

Higgs boson cross-section measurement: inclusive

PRD 101 (2020) 012002

ATLAS

up to 79.8 fb⁻¹

Products of cross sections and BRs • A description of both the production and decay mechanisms of the Higgs boson is obtained by considering the products $\sigma_{\rm prod} \times {\rm BR}$ of the cross section in production process *i* and branching fraction to final state f.

- low sensitivity;
- signal strengths negative event yield.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

 $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu$

CMS EPJC 79 (2019) 421

$\mu_{if} = \frac{\sigma_i}{\sigma_i^{SM}} \times \frac{BR_f}{BR_f^{SM}}$

• Not all the processes are considered $(VH \rightarrow TT for both, VBF \rightarrow bb for CMS), due to$

• CMS restricts to non-negative values some

• background contamination is sufficiently low so that a negative signal strength can result in an overall

29.01.2020

Higgs boson couplings: combined measurement

PRD 101 (2020) 012002

ATLAS

up to 79.8 fb⁻¹

κ - framework model to study Higgs couplings

• assumed that there are no BSM contributions to the total Higgs boson width; • coupling modifiers are introduced in order to test for deviations in the couplings of the Higgs boson to other particles;

 $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu$

CMS

EPJC 79 (2019) 421

35.9 fb⁻¹

• for a given production process or decay mode *j*, a coupling modifier κ_j is defined such that $\kappa_i^2 = \sigma_j / \sigma_j^{SM}$ or $\kappa_i^2 = \Gamma_j / \Gamma_j^{SM}$ • Individual coupling modifiers, corresponding to tree-level Higgs boson couplings to the different particles, are introduced.

35.9 fb⁻¹ (13 TeV) CMS $K_F \frac{m_F}{\sqrt{}}$ or $\sqrt{K_V}$ coupling-strength scale factors 10- 10^{-2} ----- SM Higgs boson for weak bosons with a mass m_V (M, ε) fit 10^{-3} ±1σ $\pm 2\sigma$ SM for fermions with a mass m_{F} . Ο Ratio 0.5 10² 10 10 Particle mass [GeV]

29.01.2020

• O

Higgs boson couplings: combined measurement

PRD 101 (2020) 012002

ATLAS

 $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu$

up to 79.8 fb⁻¹

Probing the universal coupling-strength scale factors

• $\kappa_V = \kappa_W = \kappa_Z$ and $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_u$

• presence of any BSM particles is not expected to significantly change the corresponding kinematic properties of the processes

• no invisible or undetected Higgs boson decays, i.e. $B_{inv} = B_{undet} = 0$;

• Only the relative sign between κ_V and κ_F is physical.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

CMS

EPJC 79 (2019) 421

35.9 fb⁻¹

Results of the combined fit in the (κ_V, κ_F) plane as well as those of the individual decay modes in this benchmark model.

Both κ_V and κ_F are measured to be compatible with the SM expectation.

15

Higgs boson cross-section measurement: differential

ATLAS-CONF-2019-032

ATLAS $H \rightarrow \gamma \gamma, ZZ^*$

Differential Higgs boson production cross sections are sensitive probes for physics beyond the SM! • it may manifest itself through deviations from the distributions predicted by the SM; • xsec measured as a function of interesting observables, different bins defined; • fiducial phase spaces defined at particle level that resemble the detector acceptance and analysis selections; • the measured cross sections are model independent and are compared with predictions of various QCD calculations

Silvia Biondi - Corso di Dottorato - AA 2019/2020

139 fb⁻¹ : 35.9 fb⁻¹

CMS

 $H \rightarrow \gamma \gamma, ZZ^*, b\bar{b}$

Higgs p_T, jet multiplicity, Higgs rapidity, jet p_T

- \bullet H \rightarrow bb included only in the combination of the Higgs p_T spectra;
- experimental syst uncertainties from the input analyses are incorporated in the combination as NPs in the extended likelihood fit and are profiled;
- theory uncertainties subject to bin-to-bin correlations.

Higgs boson cross-section measurement: differential

ATLAS-CONF-2019-032

ATLAS $H \rightarrow \gamma \gamma, ZZ^*$

139 fb⁻¹

• $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ only for both the experiments;

• both the results are in good agreement with SM prediction ($\sigma_{TOT}^{SM} = 55.6 \pm 2.5 \text{ pb}$).

 $\sigma_{\text{TOT}} = 55.4 \pm 3.1 \text{ (stat)} + 3.0 \text{ (syst) pb}$ $\sigma_{{
m H} o \gamma \gamma} = {
m 56} \, . \, 7^{+6.4}_{-6.2} \, {
m pb}$ ATLAS Preliminary $-- \sigma_{pp \rightarrow H} \quad m_H = 125.09 \text{ GeV}$ $\sigma_{\rm H o ZZ} = 54 \,.\, 4^{+5.6}_{-5\,4}\,{
m pb}$ 100 QCD scale uncertainty $4 H \rightarrow \gamma \gamma \quad \Leftrightarrow H \rightarrow ZZ^* \rightarrow 4l$ ففع **Total uncertainty** (scale \oplus PDF+ α_s) Combined data 80 Systematic uncertainty • combination 60 improves the precision by 40 ~20% wrt the $H \rightarrow \gamma \gamma$ channel 20 $\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ individually $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 12 13 √*s* [TeV]

Silvia Biondi - Corso di Dottorato - AA 2019/2020

35.9 fb⁻¹

- **Total cross-section measurement**

Higgs boson width measurement: constraints

ATLAS PLB 786 (2018) 223-244

 $H \rightarrow ZZ^* \rightarrow 4l/2l2\nu \quad H \rightarrow ZZ \rightarrow 4l/2l2\nu$

Combination of on-shell and off-shell analyses:

o non negligible interference effects between the production processes;

 $\mu_{\text{off-shell}} = \frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{constrained}}^{gg \to H^* \to ZZ}} = k_{g,\text{off-shell}}^2 \cdot k_{Z,\text{off-shell}}^2$ off-shell. SN $\mu_{\text{on-shell}} = \frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ^*}}{\sigma^{gg \to H \to ZZ^*}} = \frac{k_{g,\text{on-shell}}^2 \cdot k_{Z,\text{on-shell}}^2}{\Gamma_{II}/\Gamma_{II}^{SM}}$ on–shell. SM k_g and k_z are the off(on)-shell coupling relative to the SM predictions associated to $gg \rightarrow H^*$ production and $H^* \rightarrow ZZ$ decay they are assumed to be the same in the off- and on-shell process

Silvia Biondi - Corso di Dottorato - AA 2019/2020

CMS <u>JHEP 11 (2017) 047</u> **36 fb⁻¹ · 24.8 fb⁻¹+80.2 fb⁻¹** $H \to ZZ^* \to 4l \qquad H \to ZZ \to 4l$

- $^{oldsymbol{o}}$ measurement of the relative off-shell and on-shell event yields provides direct information about Γ_H

Silvia Biondi - Corso di Dottorato - AA 2019/2020

29.01.2020

Search for $H \rightarrow \mu\mu$ decay mode **ATLAS** ATLAS-CONF-2019-028 **139 fb-1 35.9 fb-1**

Study of particular importance, because it extends the investigation to its couplings to fermions of the second generation • expected BR to Higgs to muons is 2.17×10-4;

 $\circ \Gamma_H$ is several orders of magnitude smaller than the O(GeV) experimental di-muon mass resolution; • signal would appear as a narrow resonance over a smoothly falling mass spectrum from the SM background processes, primarily Drell-Yan (DY), > 90%, and leptonic tt decays.

Strategy:

- events containing two oppositecharge muon candidates;
- 12 categories divided by jet multiplicity and BDTs score indicating probability of a specific Higgs production mode;

Silvia Biondi - Corso di Dottorato - AA 2019/2020

CMS

Search for $H \rightarrow \mu\mu$ decay mode **ATLAS** ATLAS-CONF-2019-028 **139 fb-1 35.9 fb-1**

Systematic uncertainties treatment

○ S/B ~ 0.2% in $m_{\mu\mu}$ = 120-130 GeV \rightarrow background determination is of paramount importance; • **analytical function** to describe with high accuracy the main background;

Results:

- improvement of about 50% in expected sensitivity compared with the previous ATLAS result;
- half of this improvement comes from the **increased integrated** luminosity and half from refinements in the analysis techniques.

CMS

PRL 122 (2019) 021801

• signal and background modelling are included in the uncertainties: accounting for possible mismodeling in the signal/bkg shape or rate; • experimental systematic uncertainties dominated in each category by jet energy scale and resolution and muon momentum resolution.

- **O improvement of about 50%** in expected sensitivity compared with the previous CMS result;
- O combination with Run 1 datasets helps the improvement.

Properties of the Higgs scalar potential (i.e. Higgs self-coupling), still largely unconstrained **O Higgs trilinear self-coupling contributions \lambda_{HHH}** need to be taken into account for the calculation of the next-to-leading (NLO) EW corrections; **O** an indirect constraint on λ_{HHH} by comparing precise measurements of **single Higgs** production yields and the SM predictions corrected for the λ_{HHH} -dependent NLO EW effects.

Strategy:

- overall 61 event categories among the analyses;
- differential xsec measurements in VBF and VH processes, just one bin in ttH;
- varied Higgs trilinear coupling, changes in κ_{1} affect not only the inclusive rates of Higgs boson production and decay processes, but also their kinematics:
- accounting for effect due to the variation of the **trilinear coupling** λ_{HHH} : both production cross section and BRs.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

ATLAS only ATL-PHYS-PUB-2019-009

 $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu$

up to 79.8 fb⁻¹

Strategy:

- likelihood fit is performed to constrain the value of the Higgs boson self-coupling κ_{λ} ;
- leaving untouched all other Higgs boson couplings ($\kappa_V = \kappa_F = 1$);
- global fit to $\kappa_{\lambda} = \lambda_{\text{HHH}} / \lambda_{\text{HHH}}^{\text{SM}}$ in the range $-20 < \kappa_{\lambda} < 20$;

• only two coupling modifiers κ_F and κ_V are considered.

Results:

- differential information currently provided by the STXS regions in the VBF, WH and ZH production modes does not help to improve the sensitivity to κ_{λ} significantly;
- a dedicated optimisation of the kinematic binning, including the most sensitive ggF and ttH production modes, still needs to be fully theoretically and experimentally explored and **might improve the** sensitivity in the future.

ATLAS only ATL-PHYS-PUB-2019-009 $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, bb, \mu \mu$

up to 79.8 fb⁻¹

29.01.2020

Two additional fit configurations are considered in this note, in which a simultaneous fit is performed to κ_{λ} and κ_F , or to κ_λ and κ_V

- remaining coupling modifier that is not included in the fit, κ_V in the first case and κ_F in the second case, is kept fixed to the SM prediction;
- target BSM scenarios where new physics could affect only the Yukawa type terms ($\kappa_V = 1$) of the SM or only the couplings to vector bosons ($\kappa_F = 1$), in addition to the Higgs boson self-coupling (κ_{λ}).

Ъ Т **Results:** • As expected, including additional degrees of 1.4⊢ freedom to the fit reduces the constraining power of the measurement; 1.3 **O** sensitivity to κ_{λ} is not much degraded when 1.2 determining κ_F at the same time, while it is degraded by 50% (on the expected lower 95% C.L. exclusion limit) when determining simultaneously κ_{V} and κ_{λ} . 0.9⊢ ★ SM Best Fit constraints become significantly - 68% CL

--95% CL

weaker in new physics scenarios where simultaneous modifications to the single Higgs boson couplings are allowed

ATLAS only ATL-PHYS-PUB-2019-009

up to 79.8 fb⁻¹

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Supporting material

LHC / HL-LHC plan 0

LHC / HL-LHC Plan

Run 1	Run 2	

			LS1	13-1	13-14 TeV EYETS						
7 TeV	8 TeV	splice c button R2E	onsolidation collimators E project						inje ci Civi		
2011	2012	2013	2014	2015	2016		2017	2018	2019		
	75% nominal luminosity	experiment beam pipes		nominal	uminosity				exper		
	30 fb ⁻¹							50 fb ⁻¹			

0 Silvia Biondi - Corso di Dottorato - AA 2019/2020

Higgs boson mass measurement: new results

PLB 784 (2018) 345

ATLAS

 $H \rightarrow ZZ^* \rightarrow 4l$

 $H \rightarrow \gamma \gamma$

 $m_{\rm H} = 124.79 \pm 0.37 \, {\rm GeV}$ $m_{\rm H} = 124.93 \pm 0.40 \, {\rm GeV}$

$m_{H} = 124.86 \pm 0.27 (\pm 0.18) \text{ GeV}$

*no Run 1 combination for this result, the full combination is shown in the main body

Silvia Biondi - Corso di Dottorato - AA 2019/2020

36 fb⁻¹. **35.9 fb⁻¹**

CMS

JHEP 11 (2017) 047

 $H \rightarrow ZZ^* \rightarrow 4l$

Strategy:

- more complex wrt previous $H \rightarrow 4I$ analysis:
 - 7 categories based on jet multiplicity, leptons, kinematics discriminants (sensitive to differente production modes and jets production), etc
 - definitions of the categories were chosen to achieve high signal purity whilst maintaining high efficiency for each of the main Higgs boson production mechanisms.

Higgs boson mass measurement: new results

PLB 784 (2018) 345

ATLAS

 $H \rightarrow ZZ^* \rightarrow 4l$

 $H \rightarrow \gamma \gamma$

 $m_{\rm H} = 124.79 \pm 0.37 \, {\rm GeV}$

 $m_{\rm H} = 124.93 \pm 0.40 \, {\rm GeV}$

$m_{H} = 124.86 \pm 0.27 (\pm 0.18) \text{ GeV}$

*no Run 1 combination for this result, the full combination is shown in the main body

Table 1

Main sources of systematic uncertainty in the Higgs boson mass m_H measured with the 4 ℓ and $\gamma\gamma$ final states using Run 1 and Run 2 data. The sum in quadrature of the individual contributions is not expected to reproduce the total systematic uncertainty due to the different methodologies employed to derive them.

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \rightarrow \gamma \gamma$ background modelling	20
$H \rightarrow \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

 \mathbf{O} · · Silvia Biondi - Corso di Dottorato - AA 2019/2020

36 fb⁻¹. 35.9 fb⁻¹

CMS

JHEP 11 (2017) 047

 $H \rightarrow ZZ^* \rightarrow 4l$

Main systematic uncertainties:

- lepton energy scale
- 41 mass resolution (20%)
- lepton identification and reconstruction efficiency (from 2.5 to 9%)
- **o** integrated luminosity (2.5%)

Higgs boson cross-section measurement: inclusive 0 CMS **ATLAS** PRD 101 (2020) 012002

						Decay tags	Production tags	Number of categories	Expected signal fractions	Mass resolution
						$H \rightarrow \gamma \gamma$, Sect. 3.1				
						γγ	Untagged	4	74–91% ggH	\approx 1–2%
							VBF	3	51–80% VBF	
							VH hadronic	1	25% WH, 15% ZH	
							WH leptonic	2	64–83% WH	
							ZH leptonic	1	98% ZH	
							VH p_{T}^{miss}	1	59% VH	
							ttH	2	80–89% ttH, ≈8% tH	
						$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, Sect	. 3.2			
	II	11 . 778	77 . 11/11/*	11	$\eta \to h\bar{h}$	4μ , $2e2\mu/2\mu 2e$, $4e$	Untagged	3	≈95% ggH	\approx 1–2%
	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ$ $t\bar{t}H$ multilepton $1\ell + 2\pi$	$H \rightarrow WW$	$H \rightarrow \tau \tau$	$H \rightarrow bb$ $t\bar{t}H \downarrow f$ boosted		VBF 1, 2-jet	6	\approx 11–47% VBF	
	$t\bar{t}H$ hadronic (4 categories)	$t\bar{t}H$ multilepton 2 opposite-sign	$n\ell + 1$ That		$t\bar{t}H = t$, boosted $t\bar{t}H = t$, resolved (11 categories)		VH hadronic	3	\approx 13% WH, \approx 10% ZH	
	in manome (i categories)	$t\bar{t}H$ multilepton 2 same-sign ℓ	(categories for 0 or 1 τ_{had})		$t\bar{t}H 2 \ell$ (7 categories)		VH leptonic	3	$\approx 46\%$ WH	
tīH		$t\bar{t}H$ multilepton 3 ℓ (categories	for 0 or 1 τ_{had})				VH p_{T}^{miss}	3	≈56% ZH	
		$t\bar{t}H$ multilepton 4 ℓ (except H-	$\rightarrow ZZ^* \rightarrow 4\ell$				ttH	3	≈71% ttH	
		$t\bar{t}H$ leptonic, $H \rightarrow ZZ^* \rightarrow 4\ell$				$\mathrm{H} \to \mathrm{W}\mathrm{W}^{(*)} \to \ell \nu \ell \nu,$	Sect. 3.3			
		ttH hadronic, $H \rightarrow ZZ^* \rightarrow 4\ell$		1		$e\mu/\mu e$	ggH 0, 1, 2-jet	17	${\approx}55{-}92\%$ ggH, up to ${\approx}15\%$ H \rightarrow $\tau\tau$	$\approx 20\%$
	VH2ℓ ℓ+Emiss	VH leptonic			$2 \ell, 75 \le p_{\rm T}^{\nu} < 150 {\rm GeV}, N_{\rm jets} = 2$		VBF 2-jet	2	\approx 47% VBF, up to \approx 25% H $\rightarrow \tau \tau$	
	$VH \ 1 \ \ell, p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}} \ge 150 \ \mathrm{GeV}$				$2 \ell, 75 \le p_{\rm T}^V < 150 \text{ GeV}, N_{\rm jets} \ge 3$	ee+µµ	ggH 0, 1-jet	6	\approx 84–94% ggH	
	$VH 1 \ell, p_T^{\ell+E_T^{\text{miss}}} < 150 \text{ GeV}$				$2 \ell, p_T^V \ge 150 \text{ GeV}, N_{\text{jets}} = 2$	eµ+jj	VH 2-jet	1	22% VH, 21% H $\rightarrow \tau \tau$	
VH	$VH E_{T}^{miss}, E_{T}^{miss} \ge 150 \text{ GeV}$	0-jet, $p_{\rm T}^{4\ell} \ge 100 {\rm GeV}$			$2 \ell, p_T^V \ge 150 \text{ GeV}, N_{\text{jets}} \ge 3$	3ℓ	WH leptonic	2	\approx 80% WH, up to 19% H $\rightarrow \tau \tau$	
	$VH E_{T}^{\text{miss}}, E_{T}^{\text{miss}} < 150 \text{ GeV}$				$1 \ell p_{\rm T}^V \ge 150 \text{ GeV}, N_{\rm jets} = 2$	4ℓ	ZH leptonic	2	85–90% ZH, up to 14% H $\rightarrow \tau \tau$	
	$VH+VBF p_T^{j\dagger} \ge 200 \text{ GeV}$				$1 \ell p_{\rm T}^{V} \ge 150 \text{ GeV}, N_{\rm jets} = 3$	$H \rightarrow \tau \tau$, Sect. 3.4	-		-	
	VH hadronic (2 categories)	2-jet, $m_{jj} < 120 \text{ GeV}$			$0 \ell, p_T^V \ge 150 \text{ GeV}, N_{\text{jets}} = 2$	$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	0-jet	4	\approx 70–98% ggH, 29% H \rightarrow WW in e μ	≈10–20%
					$0 \ell, p_{\rm T}^{\rm V} \ge 150 \text{ GeV}, N_{\rm jets} = 3$		VBF	4	\approx 35–60% VBF, 42% H \rightarrow WW in e μ	
	VBF, $p_T^{\gamma\gamma jj} \ge 25$ GeV (2 categories)	2-jet VBF, $p_{\rm T}^{j1} \ge 200 \text{ GeV}$	2-jet VBF	VBF $p_{\rm T}^{\tau\tau} > 140 \text{ GeV}$	VBF, two central jets		Boosted	4	\approx 48–83% ggH, 43% H \rightarrow WW in e μ	
VBF	VBF, $p_T^{\gamma\gamma jj} < 25$ GeV (2 categories)	2-jet VBF, $p_T^{j1} < 200 \text{ GeV}$		$(\tau_{had}\tau_{had} \text{ only})$	VBF, four central jets	VH production with H	\rightarrow bb, Sect. 3.5			
, 11				VBF high- m_{jj}	VBF+y	$Z(\nu\nu)H(bb)$	ZH leptonic	1	≈100% VH, 85% ZH	$\approx 10\%$
				VBF low-m _{jj}		$W(\ell \nu)H(bb)$	WH leptonic	2	≈100% VH, ≈97% WH	
	2-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 \text{ GeV}$	1-jet, $p_{\rm T}^{4\ell} \ge 120 {\rm GeV}$	1-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\rm T}^{\ell_2} < 20 \text{ GeV}$	Boosted, $p_{\rm T}^{\tau\tau} > 140 {\rm GeV}$		Z(ll)H(bb)	Low- $p_{\rm T}(V)$ ZH leptonic	2	$\approx 100\%$ ZH, of which $\approx 20\%$ ggZH	
	2-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma} < 200$ GeV	1-jet, 60 GeV $\leq p_{\rm T}^{4\ell} < 120$ GeV	1-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$	Boosted, $p_{\rm T}^{\tau\tau} \le 140 \text{ GeV}$			High- $p_{\rm T}(V)$ ZH leptonic	2	$\approx 100\%$ ZH, of which $\approx 36\%$ ggZH	
	2-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma} < 120$ GeV	1-jet, $p_{\rm T}^{4\ell}$ < 60 GeV	1-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} < 20 \text{ GeV}$			Boosted H Production	with $H \rightarrow bb$, Sect. 3.6			
aaF	2-jet, $p_{\rm T}^{\gamma\gamma} < 60 {\rm GeV}$	0-jet, $p_{\rm T}^{4\ell}$ < 100 GeV	1-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$			bb	$p_{\rm T}({\rm H})$ bins	6	≈72–79% ggH	$\approx 10\%$
gg1.	1-jet, $p_{\rm T}^{\tilde{\gamma}\gamma} \ge 200 \text{ GeV}$		0-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\rm T}^{\ell_2} < 20 \text{ GeV}$			ttH production with H -	→ leptons, Sect. 3.7.1			
	1-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma} < 200$ GeV		0-jet, $m_{\ell\ell} < 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$			2ℓss	ttH	10	WW/ $\tau\tau \approx 4.5$, $\approx 5\%$ tH	
	1-jet, 60 GeV $\leq p_{\rm T}^{\gamma \gamma} < 120$ GeV		0-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} < 20 \text{ GeV}$			3ℓ		4	WW : $\tau\tau$: ZZ \approx 15 : 4 : 1, \approx 5% tH	
	1-jet, $p_{\rm T}^{\gamma\gamma} < 60 \text{ GeV}$		0-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_T^{\ell_2} \ge 20 \text{ GeV}$			4ℓ		1	WW : $\tau\tau$: ZZ \approx 6 : 1 : 1. \approx 3% tH	
	0-jet (2 categories)					$1\ell + 2\tau_h$		1	96% ttH with H $\rightarrow \tau \tau$, $\approx 6\%$ tH	
						$2\ell ss+1\tau_b$		2	$\tau\tau$: WW \approx 5 : 4, \approx 5% tH	
						3ℓ+11		1	$\tau\tau$: WW : ZZ ≈ 11 : 7 : 1. \approx 3% tH	
						ttH production with H	\rightarrow bb, Sect. 3.7.2			
						bb	$t\bar{t} \rightarrow iets$	6	\approx 83–97% ttH with H \rightarrow bb	
								-		

Silvia Biondi - Corso di Dottorato - AA 2019/2020

EPJC 79 (2019) 421

-··O

Higgs boson cross-section measurement: inclusive CMS ATLAS PRD 101 (2020) 012002

The number of signal events in each analysis category k is expressed as

$$n_k^{\text{signal}} = \mathcal{L}_k \sum_i \sum_f (\sigma \times B)_{if} (A \times \epsilon)_{if,k}$$

where the sum runs over production modes i ($i = ggF, VBF, WH, ZH, t\bar{t}H, ...$) and decay final st $f(f = \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu), \mathcal{L}_k$ is the integrated luminosity of the dataset used in category k, $(A \times \epsilon)_{if,k}$ is the acceptance times efficiency factor in category k for production mode i and final f. The cross section times branching fraction $(\sigma \times B)_{if}$ for each relevant pair (i, f) are the parameters of interest of the model. The measurements presented in this paper are obtained from fits in which t

Uncertainty source	$\Delta \mu / \mu$ [%]
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
Signal	4.2
Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
Luminosity	2.0
Background modeling	1.6
Jets, $E_{\rm T}^{\rm miss}$	1.4
Flavor tagging	1.1
Electrons, photons	2.2
Muons	0.2
τ -lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

0 Silvia Biondi - Corso di Dottorato - AA 2019/2020

Decay tags	Production tags	Number of categories	Expected signal fractions
	$t\bar{t} \rightarrow 1\ell$ +jets	18	\approx 65–95% ttH with H \rightarrow bb, up to 20% H \rightarrow WW
	$t\bar{t} \rightarrow 2\ell$ +jets	3	\approx 84–96% ttH with H \rightarrow bb
Search for $H \rightarrow f$	$\mu\mu$, Sect. 3.8		
μμ	S/B bins	15	56-96% ggH, 1-42% VBF
Search for invisib	ole H decays, Sect. 3.9		
Invisible	VBF	1	52% VBF, 48% ggH
	$ggH + \geq 1$ jet	1	80% ggH, 9% VBF
	VH hadronic	1	54% VH, 39% ggH
	ZH leptonic	1	$\approx 100\%$ ZH, of which 21% ggZH

Mass resolution

$\approx 1-2\%$

Higgs boson cross-section measurement: inclusive CMS PRD 101 (2020) 012002 **ATLAS**

FIG. 4. Observed likelihood contours in the plane of σ_{VBF} versus σ_{ggF} from individual channels and the combined fit. Contours for 68% CL, defined in the asymptotic approximation by $-2 \ln \Lambda = 2.28$, are shown as solid lines. The 95% CL contour for the combined fit, corresponding to $-2 \ln \Lambda = 5.99$, is also shown as a dashed line. The crosses indicate the best-fit values, and the solid ellipse the SM prediction. Higgs boson branching fractions are fixed to their SM values within theory uncertainties. The probability of compatibility between the combined measurement and the SM prediction, estimated using the procedure outlined in the text with two d.o.f., corresponds to a p-value of $p_{\rm SM} = 50\%$.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Higgs boson couplings: combined measurement

PRD 101 (2020) 012002

ATLAS

Production	Loops	Interference	Effective	P esolved modifier
Floduction	Loops	Interference	modifier	Resolved modifier
$\sigma(ggF)$	\checkmark	t–b	κ_g^2	$1.04 \kappa_t^2 + 0.002 \kappa_b^2 - 0.04 \kappa_t \kappa_b$
$\sigma(\text{VBF})$	-	-	-	$0.73 \kappa_W^2 + 0.27 \kappa_Z^2$
$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z	K(ggZH)	$2.46 \kappa_Z^2 + 0.46 \kappa_t^2 - 1.90 \kappa_Z \kappa_t$
$\sigma(WH)$	-	-	-	κ_W^2
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2
$\sigma(tHW)$	-	t-W	-	$2.91 \kappa_t^2 + 2.31 \kappa_W^2 - 4.22 \kappa_t \kappa_W$
$\sigma(tHq)$	-	t-W	-	$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$
$\sigma(b\bar{b}H)$	-	-	-	κ_b^2
Partial decay width	ı			
Γ^{bb}	_	-	-	κ_{b}^{2}
Γ^{WW}	-	-	-	κ_W^2
Γ^{gg}	\checkmark	t–b	κ_g^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$
$\Gamma^{ au au}$	-	-	-	κ_{τ}^2
Γ^{ZZ}	-	-	-	κ_Z^2
Γ^{cc}	-	-	-	$\kappa_c^2 \ (= \kappa_t^2)$
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$
$\Gamma^{Z\gamma}$	\checkmark	t-W	$\kappa^2_{(Z\gamma)}$	$1.12 \kappa_W^2 - 0.12 \kappa_W \kappa_t$
Γ^{ss}	-	-	-	$\kappa_s^2 \ (= \kappa_b^2)$
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2
Total width ($B_{inv} =$	$B_{undet} =$	0)		
				$0.58 \kappa_b^2 + 0.22 \kappa_W^2$
				+0.08 κ_g^2 + 0.06 κ_τ^2
Γ_H	\checkmark	-	κ_H^2	$+0.03 \kappa_Z^2 + 0.03 \kappa_c^2$
				+0.0023 κ_{γ}^2 + 0.0015 $\kappa_{(Z\gamma)}^2$
				$+0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2$
				μ

0 • • • • • Silvia Biondi - Corso di Dottorato - AA 2019/2020

CMS

EPJC 79 (2019) 42

An additional fit is performed using a phenomenological parametrization relating the masses of the fermions and vector bosons to the corresponding κ modifiers using two parameters, denoted *M* and ϵ [113, 114]. In such a model one can relate the coupling modifiers to *M* and ϵ as $\kappa_{\rm F} = v \ m_{\rm f}^{\epsilon}/M^{1+\epsilon}$ for fermions and $\kappa_{\rm V} = v \ m_{\rm V}^{2\epsilon}/M^{1+2\epsilon}$ for vector bosons. Here, v = 246.22 GeV, is the SM Higgs boson vacuum expectation value [115].

The SM expectation, $\kappa_i = 1$, is recovered when $(M, \epsilon) = (v, 0)$.

+ 7		$(1) / 6 v^2 + 0 / 6 v^2 + 0 0 v_{-} v$						
l-Z -	K(ggZH) -	$2.40 \ \kappa_{Z} + 0.40 \ \kappa_{t} - 1.90 \ \kappa_{Z} \kappa_{t}$ κ_{u}^{2}		Effective	Loops	Interference	Scaling factor	Resolved scaling factor
-	-	κ_t^2		Production				
t-W	-	$2.91 \kappa_t^2 + 2.31 \kappa_W^2 - 4.22 \kappa_t \kappa_W$		$\sigma(ggH)$	\checkmark	g-t	$\kappa_{\rm g}^2$	$1.04\kappa_{\rm t}^2 + 0.002\kappa_{\rm b}^2 - 0.038\kappa_{\rm t}\kappa_{\rm b}$
t-W	-	$2.63 \kappa_t^2 + 3.58 \kappa_W^2 - 5.21 \kappa_t \kappa_W$	•	$\sigma(VBF)$	_	_	-	$0.73\kappa_{ m W}^2 + 0.27\kappa_{ m Z}^2$
-	-	κ_b^2	•	σ (WH)	_	_		$\kappa_{ m W}^2$
			•	$\sigma(qq/qg \rightarrow ZH)$	_	—		$\kappa_{\rm Z}^2$
-	-	κ_{h}^{2}		$\sigma(\mathrm{gg} \rightarrow \mathrm{ZH})$	\checkmark	Z-t		$2.46\kappa_{\rm Z}^2+0.47\kappa_{\rm t}^2-1.94\kappa_{\rm Z}\kappa_{\rm t}$
-	-	κ_w^2	•	$\sigma(\text{ttH})$	—	—		$\kappa_{\rm t}^2$
t–b	κ_g^2	$1.11 \kappa_t^2 + 0.01 \kappa_b^2 - 0.12 \kappa_t \kappa_b$	•	$\sigma(\text{gb} \rightarrow \text{WtH})$	—	W-t		$2.91\kappa_{\rm t}^2+2.31\kappa_{\rm W}^2-4.22\kappa_{\rm t}\kappa_{\rm W}$
-	-	κ_{τ}^2	•	$\sigma(qb \rightarrow tHq)$	—	W-t		$2.63\kappa_{\rm t}^2 + 3.58\kappa_{\rm W}^2 - 5.21\kappa_{\rm t}\kappa_{\rm W}$
-	-	κ_Z^2	•	σ (bbH)	—	—		$\kappa_{\rm b}^2$
-	-	$\kappa_c^2 (= \kappa_t^2)$	•	Partial decay width				
t–W	κ_{ν}^2	$1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$	•	Γ^{ZZ}	_	_		$\kappa_{\rm Z}^2$
t–W	$\kappa_{(72)}^2$	$1.12 \kappa_W^2 - 0.12 \kappa_W \kappa_t$	•	$\Gamma^{ m WW}$	_	_		$\kappa_{ m W}^2$
-	(Zy) -	$\kappa_s^2 (= \kappa_b^2)$	•	$\Gamma^{\gamma\gamma}$	\checkmark	W-t	κ_{γ}^2	$1.59\kappa_{\rm W}^2 + 0.07\kappa_{\rm t}^2 - 0.67\kappa_{\rm W}\kappa_{\rm t}$
-	-	κ_{ii}^2	•	$\Gamma^{ au au}$	—	—		$\kappa_{ au}^2$
0)		μ	•	$arGamma^{ ext{bb}}$	—	—		$\kappa_{\rm b}^2$
0)		$0.58 \kappa^2 + 0.22 \kappa^2$	•	$\Gamma^{\mu\mu}$	—	—		κ_{μ}^2
		$+0.08 \kappa^2 + 0.06 \kappa^2$	•	Total width for \mathcal{B}_{BSM}	= 0			
-	κ^2	$+0.03 \kappa_g^2 + 0.03 \kappa_\tau^2$	•					$0.58\kappa_{\rm b}^2 + 0.22\kappa_{\rm W}^2 + 0.08\kappa_{\rm g}^2$
	ĽΗ	$+0.003 \kappa_Z^2 + 0.003 \kappa_c^2$ +0.0023 $\kappa^2 + 0.0015 \kappa^2$	•	$\Gamma_{ m H}$	\checkmark	—	$\kappa_{ m H}^2$	$+0.06\kappa_{\tau}^{2}+0.026\kappa_{Z}^{2}+0.029\kappa_{c}^{2}$
		$+0.0023 k_{\gamma}^{2} + 0.0013 k_{(Z\gamma)}^{2}$	•					$+0.0023\kappa_{\gamma}^{2}+0.0015\kappa_{Z\gamma}^{2}$
		$+0.0004 k_s + 0.00022 k_{\mu}$	•					$+0.00025\kappa_{\rm s}^2+0.00022\kappa_{\mu}^2$

32

Higgs boson couplings: combined measurement

PRD 101 (2020) 012002

ATLAS

 $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu$

up to 79.8 fb⁻¹

Parameter	Result
КZ	1.10 ± 0.08
КW	1.05 ± 0.08
КЪ	$1.06 \begin{array}{c} + \ 0.19 \\ - \ 0.18 \end{array}$
κ _t	$1.02 \ {}^{+}_{-} \ {}^{0.11}_{0.10}$
$\kappa_{ au}$	1.07 ± 0.15
Kμ	< 1.53 at 95% CL

 $\Gamma_{H, TOT}$ is affected bo and contributions from Higgs boson decays

- invisible decays, which Et^{miss} signatures;
- o undetected decays, analyses included in sensitive;
- BR for decays into inv from the $H \rightarrow ZZ^* \rightarrow 4v$
 - BSM contribution

by Binv and Bundet

CMS

EPJC 79 (2019) 421

35.9 fb⁻¹

oth by modifications of the κ_j n two additional classes of	Parameter	Best fit valu	le
ch are identified through an	$\kappa_{ m W}$	1.10	$^{+0.12}_{-0.17}$
, to which none of the this combination are	κz	0.99	(+0.11) (-0.10) +0.11 -0.12 (+0.11)
visible final states is ~ 0.1%, process	κ _t	1.11	(-0.11) +0.12 -0.10 (+0.11)
ns to these BRs are denoted	κ _b	-1.10	(-0.12) +0.33 -0.23 (+0.22)
	$\kappa_{ au}$	1.01	(-0.22) +0.16 -0.20 (+0.17)
	κ_{μ}	0.79	(-0.15) +0.58 -0.79

 $\binom{+0.50}{-1.01}$

33

Higgs boson cross-section measurement: differential

ATLAS-CONF-2019-032

0

ATLAS $H \rightarrow \gamma \gamma, ZZ^*$

139 fb⁻

$p_{\mathrm{T,H}}$ Bin	$d\sigma/dp_{\rm T,H} ~({\rm pb/GeV})$
$0-10 \mathrm{GeV}$	0.73 ± 0.15
$10-20 {\rm ~GeV}$	1.16 ± 0.21
$20-30~{\rm GeV}$	0.80 ± 0.15
$30-45~{\rm GeV}$	0.58 ± 0.10
$45-60 \mathrm{GeV}$	0.278 ± 0.075
$60-80~{\rm GeV}$	0.215 ± 0.054
$80-120~{\rm GeV}$	0.142 ± 0.023
$120\text{-}200~\mathrm{GeV}$	0.044 ± 0.007
$200\text{-}350~\mathrm{GeV}$	0.007 ± 0.001
$350\text{-}1000~\mathrm{GeV}$	$0.0002 \pm 8 \times 10^{-5}$

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Channel	$p_{\mathrm{T}}^{\mathrm{H}}$ binning	g (GeV)												
$H \rightarrow \gamma \gamma$	[0, 15)	[15, 30)	[30, 45)	[45, 80)	[80, 1]	20)	[120,	200)	[200,	350)	[350, 60	D)	[600,
$H \rightarrow ZZ$ $H \rightarrow b\overline{b}$	None	[15, 30)	[30, 80)			[80, 2	50)			[200,	∞)	[350, 60	D)	[600,
Charmal		L himm												
Channel	N	jets DINN				2								
$H \rightarrow \gamma \gamma$ $H \rightarrow ZZ$	0		1	2		3 ≥3	2	4						
Channel	<i>y</i> _H bi	inning												
$\begin{array}{l} H \to \gamma \gamma \\ H \to ZZ \end{array}$	[0.0, 0. [0.0, 0.	.15) .15)	[0.15, 0.3 [0.15, 0.3	0) 0)	[0.3 [0.3	80, 0.60) 80, 0.60)		[0.60 [0.60	0.90) 0.90)		[0.90, [0.90,	1.20) 1.20)	[1.] [1.]	20, 2.5 20, 2.5
Channel	$p_{ m T}^{ m jet}$ b	oinning ((GeV)										-	
$\begin{array}{l} H \rightarrow \gamma \gamma \\ H \rightarrow ZZ \end{array}$	[0, 30 [0, 30	D) D)	[30, 55) [30, 55)		[55, 95) [55, 95)	[9 [9	5, 120 5, ∞))	[120,	200)		[200, ∞)	-	

m=1

Higgs boson cross-section measurement: differential 0

35.9 fb⁻¹

Silvia Biondi - Corso di Dottorato - AA 2019/2020

CMS

PLB 792 (2019) 369

Silvia Biondi - Corso di Dottorato - AA 2019/2020

nt	: constraints		
b-1	24.8 fb ⁻¹ +80.2 fb ⁻¹	CMS	<u>JHEP 11 (20</u>
	$H \rightarrow ZZ^*$ –	$\rightarrow 4l \qquad H \rightarrow$	$ZZ \rightarrow 4l$
	Parameter	Observed	Expected
	Γ_H (MeV)	$3.2^{+2.8}_{-2.2}$ [0.08, 9.16]	$4.1^{+5.0}_{-4.0}$ [0.0, 13
g			
)] }]			
5]	D 12 112		
<u>?]</u>	$\kappa_{gg} = \kappa_{g,off-shell}^{-}/\kappa_{g,on-sl}^{-}$	hell • • • • • • • • • • • • • • • • • • •	
~			

Higgs boson width measurement: constraints

PLB 786 (2018) 223-244

ATLAS

 $H \rightarrow ZZ^* \rightarrow 4l/2l2\nu \quad H \rightarrow ZZ \rightarrow 4l/2l2\nu$

Systematic uncertainty	95% CL upper limit on $\mu_{ ext{off-shell}}$						
	$ZZ \rightarrow 4\ell$	$ZZ \rightarrow 2\ell 2\nu$	Combined				
QCD scale $q\bar{q} \rightarrow ZZ$	4.2	3.9	3.2				
QCD scale $gg \rightarrow (H^* \rightarrow)ZZ$	4.2	3.6	3.1				
Luminosity	4.1	3.5	3.1				
Remaining systematic uncertainties	4.1	3.5	3.0				
All systematic uncertainties	4.3	4.4	3.4				
No systematic uncertainties	4.0	3.4	3.0				

CMS JHEP 11 (2017) 047 **36 fb⁻¹ · 24.8 fb⁻¹+80.2 fb⁻¹** $H \to ZZ^* \to 4l \qquad H \to ZZ \to 4l$

Search for H \rightarrow µµ decay mode

PLB 784 (2018) 345

0

ATLAS

Category 0-jet			1-jet		VBF		2-jet $O_{\rm VBF} < 0.60$	-										
High Medium	$O_{ggF}^{0} \ge 0.7$ $0.35 \le O_{ggF}^{0} <$	75 < 0.75 0.38	$O_{ggF}^{1} \ge 0.7$ $8 \le O_{ggF}^{1} < 0$	78 < 0.78	$O_{\rm VBF} \ge 0.$ $0.77 \le O_{\rm VBF}$.89 < 0.89 0	$O_{ggF}^2 \ge 0.48$ $0.22 \le O_{ggF}^2 < 0.48$	_ • • •										
Low	$O_{ggF}^0 < 0.3$	35	$O_{ggF}^1 < 0.2$	38	$0.60 \le O_{\rm VBF}$	< 0.77	$O_{ggF}^2 < 0.22$	BDT response quantile (%)	Maximum muon $ \eta $	ggH (%)	VBF (%)	WH (%)	ZH (%)	tīH (%)	Signal	Bkg/GeV @125 GeV	FWHM (GeV)	Bkg fit function
								0-8 8-39 8-39	$ \eta < 2.4$ $1.9 < \eta < 2.4$ $0.9 < \eta < 1.9$ $ \eta < 0.9$	4.9 5.6 10	1.3 1.7 2.8	3.3 3.9 6.5	6.3 3.5 6.4	32 1.3 5.2	21.2 22.3 41.1	3.13×10^{3} 1.34×10^{3} 2.24×10^{3} 7.82×10^{2}	4.2 7.2 4.1	$\mathcal{D}_{ ext{MBW}} egin{array}{c} B_{ ext{deg 4}} \ \mathcal{D}_{ ext{MBW}} egin{array}{c} B_{ ext{deg 4}} \ \mathcal{D}$
Categ	gory	Data	S _{SM}	S	В	S/\sqrt{B}	S/B [%]	8-39 39-61 39-61	$ \eta < 0.9$ $1.9 < \eta < 2.4$ $0.9 < \eta < 1.9$ $ \eta < 0.9$	5.2 2.9 7.2	0.8 1.7 3.3	1.9 2.7 6.1	2.1 2.7 5.2 2.2	5.5 0.3 1.3	12.7 11.8 29.2	7.83×10^{2} 4.37×10^{2} 9.70×10^{2} 4.81×10^{2}	2.9 7.0 4.0 2.8	$\mathcal{D}_{\mathrm{MBW}} \begin{array}{c} B_{\mathrm{deg} \ 4} \\ \mathcal{D}_{\mathrm{MBW}} \begin{array}{c} B_{\mathrm{deg} \ 4} \\ \mathcal{D}_{\mathrm{MBW}} \begin{array}{c} B_{\mathrm{deg} \ 4} \\ \mathcal{D}_{\mathrm{MBW}} \end{array} \end{array}$
VBF	High	40	4.5	2.3	34	0.39	6.6	• 61–76	$ \eta < 0.9$ $1.9 < \eta < 2.4$ $0.9 < \eta < 1.9$	5.0 1.2 4.8	1.1 1.5 3.6	2.0 1.8 4.5	2.2 1.7 4.4	0.9 0.2 0.7	14.3 5.2 20.3	4.81×10^{-1} 1.48×10^{2} 5.12×10^{2}	2.8 7.6 4.2	$\mathcal{D}_{\mathrm{MBW}}$ $\mathcal{D}_{\mathrm{MBW}}$ $B_{\mathrm{deg }4}$ $\mathcal{D}_{\mathrm{MBW}}$ $B_{\mathrm{deg }4}$
VBF	Medium	109	5.5	2.8	100	0.28	2.8	• 61–76 • 76–91	$ \eta < 0.9$ $1.9 \le \eta \le 2.4$	3.2	1.6 3.1	2.3	2.1	0.6	13.1	3.22×10^2 1.04 × 10 ²	3.0	\mathcal{D}_{MBW} \mathcal{D}_{MBW}
VBF	Low	450	9.6	4.9	420	0.24	1.2	76–91 76–91	$1.9 < \eta < 2.4$ $0.9 < \eta < 1.9$	4.4	8.7	6.2	6.0	1.1	20.3	3.60×10^2	4.2	$\mathcal{D}_{\text{MBW}} B_{\text{deg 4}}$ $\mathcal{D}_{\text{MBW}} B_{\text{deg 4}}$
2-jet	High	3400	38	19	3440	0.33	0.6	76–91 91–95	$ \eta < 0.9$ $ \eta < 2.4$	3.1 1.7	4.0 6.4	3.8 2.5	3.6 2.6	0.9 0.5	13.7 8.6	2.36×10^{2} 96.0	3.2 4.0	$\mathcal{D}_{ ext{MBW}} \ \mathcal{D}_{ ext{MBW}}$
2-jet	Medium	13938	70	35	13910	0.30	0.3	95–100 • Total	$ \eta < 2.4$ $ \eta < 2.4$	2.0 59	19 61	1.5 51	1.4 52	0.7 49	13.7 253	83.4 1.30×10^4	4.1 3.9	$\mathcal{D}_{ m MBW}$
2-jet	Low	40747	75	38	40860	0.19	0.1	•	1 <									
1-jet	High	2885	32	16	2830	0.31	0.6	•										

i jet ingn	2005	52	10	2050	0.51	0.0
1-jet Medium	24919	107	54	24890	0.35	0.2
1-jet Low	77482	134	68	77670	0.24	0.1
0-jet High	24777	85	43	24740	0.27	0.2
0-jet Medium	85281	155	79	85000	0.27	0.1
0-jet Low	180478	144	73	180000	0.17	<0.1

0. Silvia Biondi - Corso di Dottorato - AA 2019/2020

2

139 fb⁻¹ : **35.9 fb**⁻¹

CMS

JHEP 11 (2017) 047

0	.12
0	.16
0	.29
0	.18
0.	.14
0	.31
0	.26
0	.11
0	.29
0	.28
0.	.14
0.	.35
0	.34
0	.28
0.	.48

Analysis	Integrated lumino	osity (fb	$^{-1})$			$H \rightarrow \gamma \gamma, ZZ^*$	$, WW^*, \tau\tau, l$
$H \rightarrow \gamma \gamma$ (including $t\bar{t}H, H \rightarrow \gamma \gamma$)	79.8						
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8						up to 79
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1						
$H \rightarrow \tau \tau$	36.1						
$VH, H \rightarrow b\bar{b}$	79.8						
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1		$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow \tau \tau$	$H \rightarrow b\bar{b}$
		tīH	$t\bar{t}H$ leptonic (3 categories) $t\bar{t}H$ hadronic (4 categories)	$t\bar{t}H$ multilepton 1 ℓ + 2 τ_{had} $t\bar{t}H$ multilepton 2 opposite-sign $t\bar{t}H$ multilepton 2 same-sign ℓ ($t\bar{t}H$ multilepton 3 ℓ (categories $t\bar{t}H$ multilepton 4 ℓ (except $H-$ $t\bar{t}H$ leptonic, $H \rightarrow ZZ^* \rightarrow 4\ell$ $t\bar{t}H$ hadronic $H \rightarrow ZZ^* \rightarrow 4\ell$	h ℓ + 1 τ_{had} (categories for 0 or 1 τ_{had}) for 0 or 1 τ_{had}) → $ZZ^* \rightarrow 4\ell$)		$t\bar{t}H \ 1 \ \ell$, boosted $t\bar{t}H \ 1 \ \ell$, resolved (11 o $t\bar{t}H \ 2 \ \ell$ (7 categories)
			VH 2 ℓ	UH hadronic, $H \rightarrow ZZ \rightarrow 4i$ VH leptonic			$2\ell_{\rm c} 75 \le p_{\rm m}^V \le 150$ C
			$VH \ 1 \ \ell, p_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}} \ge 150 \ \mathrm{GeV}$				$2 \ell, 75 \leq p_{\rm T}^{\rm V} < 150 \rm G$ $2 \ell, 75 \leq p_{\rm T}^{\rm V} < 150 \rm G$
		VH	$VH \ 1 \ \ell, \ p_{T}^{\ell+E_{T}} < 150 \text{ GeV}$ $VH \ E_{T}^{\text{miss}}, \ E_{T}^{\text{miss}} \ge 150 \text{ GeV}$ $VH \ E_{T}^{\text{miss}}, \ E_{T}^{\text{miss}} < 150 \text{ GeV}$ $VH \ VH \ F_{T} \ p_{T}^{j \ 1} \ge 200 \text{ GeV}$ $VH \ hadronic \ (2 \text{ categories})$	0-jet, $p_T^{4\ell} \ge 100 \text{ GeV}$ 2-jet, $m_{ij} < 120 \text{ GeV}$			$ \begin{array}{ c c c c c } 2 \ \ell, \ p_{\rm T}^V \geq 150 \ {\rm GeV}, \ N \\ 2 \ \ell, \ p_{\rm T}^V \geq 150 \ {\rm GeV}, \ N \\ 1 \ \ell \ p_{\rm T}^V \geq 150 \ {\rm GeV}, \ N \\ 1 \ \ell \ p_{\rm T}^V \geq 150 \ {\rm GeV}, \ N \\ 0 \ \ell, \ p_{\rm T}^V \geq 150 \ {\rm GeV}, \ N \end{array} $
							$0 \ \ell, \ p_{\mathrm{T}}^{V} \ge 150 \mathrm{GeV}, \ \Lambda$
		VBF	VBF, $p_T^{\gamma\gamma jj} \ge 25$ GeV (2 categories) VBF, $p_T^{\gamma\gamma jj} < 25$ GeV (2 categories)	2-jet VBF, $p_{T}^{j1} \ge 200 \text{ GeV}$ 2-jet VBF, $p_{T}^{j1} < 200 \text{ GeV}$	2-jet VBF	$VBF p_T^{\tau\tau} > 140 \text{ GeV}$ $(\tau_{had}\tau_{had} \text{ only})$ $VBF \text{ high-}m_{jj}$ $VBF \text{ low-}m_{jj}$	
		ggF	$\begin{array}{l} 2\text{-jet, } p_{\mathrm{T}}^{\gamma\gamma} \geq 200 \; \mathrm{GeV} \\ 2\text{-jet, } 120 \; \mathrm{GeV} \leq p_{\mathrm{T}}^{\gamma\gamma} < 200 \; \mathrm{GeV} \\ 2\text{-jet, } 60 \; \mathrm{GeV} \leq p_{\mathrm{T}}^{\gamma\gamma} < 120 \; \mathrm{GeV} \\ 2\text{-jet, } p_{\mathrm{T}}^{\gamma\gamma} < 60 \; \mathrm{GeV} \\ 1\text{-jet, } p_{\mathrm{T}}^{\gamma\gamma} \geq 200 \; \mathrm{GeV} \\ 1\text{-jet, } 120 \; \mathrm{GeV} \leq p_{\mathrm{T}}^{\gamma\gamma} < 200 \; \mathrm{GeV} \\ 1\text{-jet, } 60 \; \mathrm{GeV} \leq p_{\mathrm{T}}^{\gamma\gamma} < 120 \; \mathrm{GeV} \\ 1\text{-jet, } p_{\mathrm{T}}^{\gamma\gamma} < 60 \; \mathrm{GeV} \\ 1\text{-jet, } p_{\mathrm{T}}^{\gamma\gamma} < 60 \; \mathrm{GeV} \\ 0\text{-jet } (2 \; \mathrm{categories}) \end{array}$	1-jet, $p_T^{4\ell} \ge 120 \text{ GeV}$ 1-jet, 60 GeV $\le p_T^{4\ell} < 120 \text{ GeV}$ 1-jet, $p_T^{4\ell} < 60 \text{ GeV}$ 0-jet, $p_T^{4\ell} < 100 \text{ GeV}$	$\begin{array}{l} 1\text{-jet, } m_{\ell\ell} < 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} < 20 \; \mathrm{GeV} \\ 1\text{-jet, } m_{\ell\ell} < 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 1\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} < 20 \; \mathrm{GeV} \\ 1\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} < 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} < 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \leq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell} \geq 30 \; \mathrm{GeV, } p_{\mathrm{T}}^{\ell_2} \geq 20 \; \mathrm{GeV} \\ 0\text{-jet, } m_{\ell} \geq 30 \; Ge$	Boosted, $p_{\rm T}^{\tau\tau} > 140 \text{ GeV}$ Boosted, $p_{\rm T}^{\tau\tau} \le 140 \text{ GeV}$	
• • • • • • • • • • • • • • • • • • •			1-jet, $p_T^{\gamma\gamma} < 60 \text{ GeV}$ 0-jet (2 categories)		0-jet, $m_{\ell\ell} \ge 30 \text{ GeV}, p_{\mathrm{T}}^{\ell_2} \ge 20 \text{ GeV}$		

• • •

Silvia Biondi - Corso di Dottorato - AA 2019/2020

ATLAS only ATL-PHYS-PUB-2019-009 TT 77* 11/11/*

 $V_{jets} = 2$ $V_{jets} = 3$

 $V_{jets} = 2$ $V_{jets} = 3$

$$\mu_{i}(\kappa_{\lambda},\kappa_{i}) = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}} = Z_{H}^{\text{BSM}}(\kappa_{\lambda}) \begin{bmatrix} \kappa_{i}^{2} + \frac{(\kappa_{\lambda} - 1)C_{1}^{i}}{K_{\text{EW}}^{i}} \end{bmatrix}$$

$$\mu_{f}(\kappa_{\lambda},\kappa_{f}) = \frac{\text{BR}_{f}^{\text{BSM}}}{\text{BR}_{f}^{SM}} = \frac{\kappa_{f}^{2} + (\kappa_{\lambda} - 1)C_{1}^{f}}{\sum_{j} \text{BR}_{j}^{\text{SM}}\left[\kappa_{j}^{2} + (\kappa_{\lambda} - 1)C_{1}^{j}\right]}$$

$$Figure 2: Vac_{\lambda}. \text{ The plow}$$

0.. Silvia Biondi - Corso di Dottorato - AA 2019/2020

ATLAS only ATL-PHYS-PUB-2019-009 $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\bar{b}, \mu \mu$

up to 79.8 fb⁻¹

ting for effect due to the variation of the trilinear coupling λ_{HHH} : duction cross section and BRs.

ariation of the cross-sections (a) and branching fractions (b) as a function of the trilinear coupling modifier ots represent the equations (2) and (4) using the numerical values shown in Tables 3 and 4, all obtained

