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Course outline

O Theory reminder

O Higgs boson production and decay modes

O Higgs boson discovery by ATLAS and CMS

O Higgs boson mass measurement by ATLAS and CMS
O Overview of ATLAS and CMS analyses about Higgs

O Signal/background discrimination techniques
O boosted regimes
O tagging, large-radius jets substructure, re-clustering
O multivariate analysis and deep neural network

O Signal extraction technigues
O likelihood and test statistic
O CLs method

O ttH analysis: an example
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Signal/lbackground discrimination technigues - |l



Multivariate analysis fechnigue
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Problem
O Analysis aim: o identity events that are both rare and overwhelmed by a wide variety of
processes that mimic the signal.

O Conventional approach by using cuts on individual kinematic variables far from be optimal!

- conventional freatment .

bkg
signal
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Multivariate analysis fechnigue

Don'u
Problem PANIGA

O Analysis aim: to identify events that are both rare and overwhelmed by a wide variety of
processes that mimic the signal.

O Conventional approach by using cuts on individual kinematic variables far from be optimal!

o 4 :
® x -
. Solution: MultiVariate Analysis (MVA) bkg
: : ] signal
- 1. choice of set of variables, characterising an event; Q o |-
2. application of non-linear cuts on sighal and background samples; -
. 3. define a function (classifier) that, using the discriminating : 0|
. variables, is able to identify each event of the real dato . -
belonging to the signal or to the background category.
.............................................................. ol
| I I
-2 0 2
X
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Multivariate analysis fechnigue

Don'u
Problem PANIG\

O Analysis aim: to identify events that are both rare and overwhelmed by a wide variety of
processes that mimic the signal.

O Conventional approach by using cuts on individual kinematic variables far from be optimal!

o 4 :
® x -
. Solution: MultiVariate Analysis (MVA) bkg
: : ] signal
- 1. choice of set of variables, characterising an event; q 5 |-
2. application of non-linear cuts on sighal and background samples; _
. 3. define a function (classifier) that, using the discriminating : 0|
. variables, is able to identify each event of the real dato . ~
belonging to the signal or to the background category. —
R R R R R R R R ol
. | | |
. -2 0 2
\ 4 X

The algorithm “learns” signal and background
characteristics (fraining) and assigns a weight fo each event
(~ probability that event is signal or background).
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

Supervised training Unsupervised iraining
a set of training events with correct no "a priori’ categories are given and the
category association is given algorithm has to find them by itself.
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

: Supervised iraining : Unsupervised iraining
- a sef of fraining events with correct no "a priori’ categories are given and the
category association is given . algorithm has to find them by itself.
v v
Linear classifier Non-linear classifier
O a group of rectangular cuts on selected O “non-linear” function: a single cut on a
variables. variable depends simultaneously on all
O A seguence of univariate analyser, no the other variables
combination of variables is achieved and O cuts not necessarily on a linear way

a cut on a variable does not depend on
another one.
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

: Supervised training : Unsupervised iraining
- a sef of fraining events with correct no "a priori”’ categories are given and the
category association is given . algorithm has to find them by itself.
v e | 28
Linear classifier X Non-linear classifier
O a group of rectangular cuts on selected * O "non-linear” function: a single cut on a
variables. : variable depends simultaneously on all
O A seguence of univariate analyser, no : the other variables
combination of variables is achieved and - O cuts not necessarily on a linear way

a cut on a variable does not depend on
another one.
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

Testing process

O discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent
wrt training ones);

O comparison to those of the fraining test;

O good agreement is crucial: it assures that the definition of discriminating variables is not due o a specific feature of
training sample.
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

Testing process

O discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent
wrt training ones);

O comparison to those of the fraining test;

O good agreement is crucial: it assures that the definition of discriminating variables is not due o a specific feature of
fraining sample.

Overtraining S

possible Inconsistency between -

: training and testing distributions, N

e > suggesting that the definition of |
discriminating variables relies on

features of the particular sample rather

than on a general feature of the kind of _

events to be selected. 2

signal
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

Testing process

O discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent
wrt training ones);

O comparison to those of the fraining test;

O good agreement is crucial: it assures that the definition of discriminating variables is not due o a specific feature of
fraining sample.

Reasons
O foo few degrees of freedom;

K V¥ 0 too many model parameters of an
algorithm adjusted to too few data points.

Overtraining
possible Inconsistency between
. training and testing distributions,
e > suggesting that the definition of
discriminating variables relies on

features of the particular sample rather ‘A Consequences
than on a general feature of the kind of O false increase in performance over the
events to be selected. objectively achievable one, if measured

on the fraining sample;

O effective performance decrease when
measured in an independent testing
sample.
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

Testing process

O discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent
wrt training ones);

O comparison to those of the fraining test;

O good agreement is crucial: it assures that the definition of discriminating variables is not due o a specific feature of
fraining sample.

Overtraining
possible Inconsistency between
training and testing distributions,

Solution
O optimisation of specific parameters of the
ML algorithm used (i.e., number of nodes,

------- > suggesting that the definitionof ... ,)  ymber of variables, deep of the tree);
discriminating variables relies on O independent samples for test and training;
features of the particular sample rather © enough statistics for samples to avoid
than on a general feature of the kind of fluctuations.
events to be selected.
o ....................................................................................................................... .o
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

Testing process

O discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent
wrt training ones);

O comparison to those of the fraining test;

O good agreement is crucial: it assures that the definition of discriminating variables is not due o a specific feature of
training sample.

Classification process

O assign objects or events to one of the possible discrete classes (e.g. signal and background) by the classifier found in
the training step;

O after this, the events of real data are split into signal and background classes.
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Multivariate analysis fechnigue: fundamental steps

Training (or learning) process
O as input a set of events, characterised by the feature variables;
O to define a function (classifier) that will be used in the classification step.

Testing process

O discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent
wrt training ones);

O comparison to those of the fraining test;

O good agreement is crucial: it assures that the definition of discriminating variables is not due o a specific feature of
training sample.

Classification process

O assign objects or events to one of the possible discrete classes (e.g. signal and background) by the classifier found in
the training step;

O after this, the events of real data are split into signal and background classes.

Different evaluation methods
. O separation;
c e s e e e ecessseeecessseeeeeeee e > O correlation:
O importance ranking.
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Multivariate analysis technigue: classification evaluation

TMVA overtraining check for classifier: BDT
= IMVA
3.5 —— | | | | | | | | | | | | | |
:-l Signal (test sanlzple ) ® Signal ( trlaining sample) |
Sepdl’dﬁon —_7// Background (test sample) ® Background (training sample)

| Kolmogorov-Smirnov test: signal (background) probability = 0.525 (0.123)

O ys and yg are the signal and background probability density functions of vy,
respectively;

(1/N) dN / dx
w

- bka-
O zero for identical signal and background shapes and 1 for shapes with no N g:g;z
overlap. A A 5 - 5|gnarz 5
o1 [(9s(y) —9B(Y)) 15 a5
<S5 >= - ~ - dy - 18
2J “9s(y) + 95(v) E i
Correlation = L 18
O two random variables X and Y; 0 04 0.2 0 0.2 0.4 :

O cov is the covariance and o(X) (o(Y)) is the variance of X (Y). BDT response

cov(X,Y)
p(X,Y) =
OX0y

Importance ranking

O by evaluating the number of times the variables are used to split
decision free nodes;

O by weighting each split occurrence (by using the same variable) by
the separation achieved and by the number of events in the node.
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Multivariate analysis technigue: classification evaluation
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TMVA overtraining check for classifier: BDT

'é 3.5

Separation % ,
O ys and yg are the signal and background probability density functions of y, 3

respectively; T 25

O zero for identical signal and background shapes and 1 for shapes with no

2
OVGI’|CIp. 1 A~ A~ 2 Correlation Matrix (signal)
2 _ (9s(y) — 98(y))”
< > — § ~ ~ y WCTAEREY 75 -1 18 13 -9 25 135 14 2/33-10 14 -4-17-16100
Js(y) + 9B(y) reene I WL CEORORL
mindR_outTs -8 -6 6 1933158
:;gsb:w - ] ; 8 18 17 61 5“
dRbb_min -4-2 7 59 7131525 -1100
H Njet_ptd0 )
Correlqll-lon SMaslsi;F:th 3.'9-14' 76 '4. 5 4100 -1 5

O two random variables X and Y;
O cov is the covariance and o(X) (o(Y)) is the variance of X (Y).

cov(X,Y)
OX0Y

1_ptd0_outTs 2 113 8-10100/20

TM =

tlau32_wta_IT [C- 80 R -

Mbb_MaxM [ ¢ [

10

p(X,Y) =

Importance ranking

O by evaluating the number of times the variables are used to split
decision free nodes;

O by weighting each split occurrence (by using the same variable) by
the separation achieved and by the number of events in the node.
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Multivariate analysis technigue: classification evaluation
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TMVA overtraining check for classifier: BDT

'é 35 1' Siglnal I(testI sanlzple)I o . Slignall (tminiilftg sézmplle) | I_:
SepCII’CIﬁOn % 3 —_7// Background (test sample) ® Background (training sample) _:
O ys and ys are the signal and background probability density functions of y, Z  [loimogorov-Smimov test: signal (background) probability =0.525 (0123) -
respectively; = 25 bka-
: : : : - d-
O zero for identical signal and background shapes and 1 for shapes with no L F ﬂ , r>
n T . IANAll=
overlap. Y 15()’ Correlation Matrix (signal)
2 yS y D yB y inear correlation coefficients in % near correlation coefficients in %
< S >: ~ / A dy N THEMEY 7599 18 .13 .9. ...... 2-.10 -4 i l 100 iT_joutTs_Ts [¥4: -28 .Ll .18 - I fﬂf ..l 100
2 I5(Y) oo R g el e el el
' - AN i 0128 14 116 4 10 SO1E o MBI 00%0 2 e
g M s 3 5 o176 agind 2551 &0 128100l 10 10 12 PN
_min || =1100 15 6-10 dF.lbb_mm ‘ 113-1 ; I‘O 5 :
Correlation o i o o 20
O two random variables X and Y; e bk Variable |Importance omEE - - asem el
: H : H t_pt40_outTs | - i 3100 : : C -20
O cov is the covariance and o(X) (o(Y)) is the variance of X (Y). oo 4,,,,2‘&,_,0_,0, 1 ARmin 01335 M o B .
lau32_wta_IT [0y T 27 : :
cov(X,Y) o [ERERIEE 2 | ARR? | oz SSREEEUELEEL e
) oo e SRS 12 13 S _
p(X ’ Y) — o o dR:::::z ;1:)10:= ;;m1 3 mgggd 0.1105 ' s ' ....... ! 80
X0y Il 4 |ARZS oy 01103 HEE «;&g}%’z@ag %i 4 mf:;’%%&f#
Importance ranking 5 mf oy | 01011
O by evaluating the number of times the variables are used to split 6 ARTn | 0.0947
O by weighting each split occurrence (by using the same variable) by ’
. : : 8 mpas 0.0808
the separation achieved and by the number of events in the node.
9 T4 e 0.0794
10 HE 0.0775
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Boosted Decision Tree - BDT

() s occvvresosrossssosescssosossscssssossssscssssososvsccsssos

O Decision tree Is a binary tree structure:

O repeated binary decisions (yes/no) taken on one single variable at a time,

until stop criteria fulfilled;

O phase space split intfo many regions eventually classified as signal or bkg xj > c2] [xj < c2] (xj>c3] [x<c3

O depending on majority of training events that end up in the final leaf node. P4 4 AW
O a sequence of binary splits applied to the data, using discriminating variables. ° Q @

ve* L\
....... [xk > c4] [xk < c4]
........ 4 \

Nodes @

where a decision is made

Final leaves
where classification of events lives
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Boosted Decision Tree - BDT

() s occvvresosrossssosescssosossscssssossssscssssososvsccsssos

O Decision tree Is a binary tree structure:

O repeated binary decisions (yes/no) taken on one single variable at a time,

until stop criteria fulfilled;

O phase space split intfo many regions eventually classified as signal or bkg xj>c2] [xj<c2) xj>c3] [xj<c3

O depending on majority of fraining events that end up in the final leaf node. 4 N 7 N
O a sequence of binary splits applied to the data, using discriminating variables. ° @
O Instabillity with respect to statistical fluctuations in the training sample. > [>|< <

¥ \
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Boosted Decision Tree - BDT

O Decision tree Is a binary tree structure:
O repeated binary decisions (yes/no) taken on one single variable at a time,
until stop criteria fulfilled;
O phase space split intfo many regions eventually classified as signal or bkg .
O depending on majority of training events that end up in the final leaf node. P4
O a sequence of binary splits applied to the data, using discriminating variables. °

O Instability with respect to statistical fluctuations in the training sample.

BOOST!

\ 4
Boosting

O Extension of this concept from one tree 1o several frees which form a “forest’’;

O frees are derived from the same training ensemble by reweighting events;

O finally combined into a single classifier which is given by an average of the
individual decision trees.

Advantages AR
more stable response of the decision trees, wrt fluctuations in the training sample, 0
thus enhancing the performance wrt a single tree
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Boosted Decision Tree - BDT

Training a decision tree
O starts with the root node, where an initial splitting criterion tfor the
full training sample is determined;

O split results in two subsets of training events, each going through
the same algorithm determining the splitting criteria of the next
nodes; «

O procedure is repeated until the whole tree is built.

O At each node, the split is determined by finding the variable and - ¥ . :
the corresponding cut value that provides the best separation : @3 :® :
between signal and background events that reach that node . : : .

O optimised by scanning over the variable range
O bin granularity plays an important role! e L 7/

O Addifion of nodes stops once the number of events that should be et .
split is below a threshold which is specified in the BDT configuration; -

O final leaves are classified as signal or background according to the
class the majority of events belongs to.
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Boosted Decision Tree - BDT

When do we stop?
O In principle, the splitfing could continue until each leaf node contains

only signal or only background events; Root
O such a decision tree would be strongly overirained! node
[xi > cl Xi < cl]
e
[XJ > c2] [XJ < c2] [xj > c3] [xj < c3]
¥ 4 N\
\
[xk > c4] [xk < c4]
¥ \
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Boosted Decision Tree - BDT

When do we stop?

O In principle, the splitfing could continue until each leaf node contains
only signal or only background events;

O such a decision tree would be strongly overirained!

v
Pruning
O process of cutting back a tree from the bottom up affer it has been
built to Its maximum size;
O remove statistically insignificant nodes and thus reduce the
overtraining of the free;
O why from the bottom up and not directly interrupting the growing?

O apparently insignificant splits can nevertheless lead to good splifs
further down the tree.

O Different algorithms available, 1o be optimised for the specific case
through parameters.
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Deep Neural Network - DNN

B|olog|cal motivations and connections
O Basic computational unit of the brain is a neuron;
O ~86 billion neurons can be found in the human nervous system and they are connected with approximately 1014 - 101> synapses;

O Each neuron receives input signals from its dendrites and produces output signals along ifs (single) axon;
O axon eventually branches out and connects via synapses to dendrites of other neurons.

O In the computational model of a neuron, the signals that travel along the axons (e.g. xo) interact multiplicatively (e.g. woxo) with
the dendrites of the other neuron based on the synaptic strength at that synapse (e.g. wo);

O idea is that the synaptic strengths (the weights w) are learnable and control the strength of influence (and its direction: excitory
(positive weight) or inhibitory (negative weight)) of one neuron on another.

L0 wo

*@® synapse
axon from a neuron
wox o

Impulses carried

toward cell body
branches cell body f (Z w;x; + b)
dendrites of axon w1 Z s 2.3 i
y g =
»; : =k f output axon
nucleus axon >teran)*(1ﬁ1nals activation
AN\ function
% i 2 W T2
714  (\ \ impulses carried NS
away from cell body Bo
cell body
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Deep Neural Network - DNN

impulses carried * .
toward cell body

branches

"« dendrites of axon

nucleus

> axon

cell body

Basic model
O the dendrites carry the signal to the cell body
where they all get summed.

O If the final sum is above a certain threshold, the
neuron can fire, sending a spike along its axon.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

terminals

*@® synapse
axon from a neuron
woL o

cell body

Zwimi = b

f( W; T; +b)
w11 Z:
-

output axon

activation
function

W2

Computational model

O we assume that the precise timings of the spikes
do not matter, and that only the frequency of
the firing communicates information;

O model the firing rate of the neuron with

an activation function f, which represents the
frequency of the spikes along the axon.
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Deep Neural Network - DNN
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output layer
iInput layer iInput layer
hidden layer hidden layer 1 hidden layer 2

O Neural Networks are modeled as collections of neurons that are connected in an acyclic graph.
O Qutputs of some neurons can become inputs fo other neurons.
O Cycles are not allowed since that would imply an infinite loop in the forward pass of a network:
O instead of an amorphous blobs of connected neurons, Neural Network models are often organized into distinct

layers of neurons.

O A most common layer type is the fully-connected layer in which neurons between two adjacent layers are fully pairwise
connected, but neurons within a single layer share no connections.

Silvia Biondi - Corso di Doftorato - AA 2019/2020 28 10.02.2020



Deep Neural Network - DNN

() scvcvvsscecssscasssoeonsosceassssasssssnnsscccassscasssonnnss
%’ \
O
\ ‘ output layer
output layer
input layer iInput layer
hidden layer hidden layer 1 hidden layer 2
General structure
O Each layer consists of many nodes;
O input layer has one node per input feature;
O output layer can have as many outputs as desired:
O just one for the case of binary classification or one per class for multi class output;
O each hidden layer in between can have an arbitrary number of nodes.
O Connections between each of these nodes are the associated parameters © (weights):
O no prior infuition for the initialisation of weights;
O O can be initialised randomly, and learning happens via the updating of the weights after seeing some training
data (back propagation).
o .......................................................................................................................
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Deep Neural Network - DNN

Training a Neural Network INPUT HIDDEN OUTPUT
O series of forward passes:

O vector of inputs x is mulfiplied by the weights 6 connecting
the first hidden layer;

0 /
@ target: O

calculated: 0.77
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Deep Neural Network - DNN

o R T T T T
Training a Neural Network INPUT HIDDEN OUTPUT
O series of forward passes: S

O vector of inputs x is multiplied by the weights © connecting
the first hidden layer;
0.3
O all connections to each node in the hidden layer are
summed (S);
O.5
069
calculated 0.77
O ....................................................................................................................... .o
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Deep Neural Network - DNN

Training a Neural Network

O series of forward passes:
O vector of inputs x is multiplied by the weights © connecting

the first hidden layer;

O all connections to each node in the hidden layer are
summed (S);

O S is passed through the activation function, to calculate

the node scores:
O analogous o an input feature from the input layer.

Activation function ar
O mathematical function used to transtorm the inputs; 2|
O The Rectified Linear Unit (ReLU) computes the function f(x)=max(0,x): ’
O greatly accelerate the convergence of stochastic gradient descent -2}
compared to other functions; R
O can be implemented by simply thresholding a matrix of activations at zero. . 0 _—

Silvia Biondi - Corso di Dottorato - AA 2019/2020

INPUT HIDDEN OUTPUT

node scores

target: O
calculated: 0.77

0.8
069
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Deep Neural Network - DNN

Training a Neural Network INPUT HIDDEN OUTPUT
O series of forward passes:

O vector of inputs x is multiplied by the weights © connecting
the first hidden layer;

O all connections to each node in the hidden layer are
summed (S);

O S is passed through the activation function, to calculate
the node scores:
O analogous o an input feature from the input layer;

O subsequently passed forward identically until reaching the
output layer, where the node scores are finally the actual
hetwork output.
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Deep Neural Network - DNN

Seﬂlng number of layers and their sizes

O increasing the size and number of layers in a NN, the capacity of the network increases.

O NN with more neurons can express more complicated functions;

3 hidden neurons

6 hidden neurons

20 hidden neurons

wajqoid uolbouissn|d Aipuiqg

Silvia Biondi - Corso di Dottorato - AA 2019/2020 34

10.02.2020



3 hidden neurons

Deep Neural Network - DNN e
Sethng number of layers and their sizes *e & ° .
O increasing the size and number of layers in a NN, the capacity of the network increases. > S . " -
A T
O NN with more neurons can express more complicated functions; p® .°

O Overfitting occurs when a model with high capacity fits the noise in the data instead of the

wajqoid uoybouissp|d Alpbuiq

(assumed) underlying relationship:
O model with 20 hidden neurons fits all the training data but at the cost of segmenting ihe * *
space into many disjoint red and green decision regions; . R v e
° ; ® o 2 o
° 20 hidden neurons
.‘ o i ﬂ ® =
o [¢) P i : :
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3 hidden neurons

Deep Neural Network - DNN e
Seﬂlng number of layers and their sizes *e & ° .
O increasing the size and number of layers in a NN, the capacity of the network increases. 4 > S . " -
.o ) ) * o ©)
O NN with more neurons can express more complicated functions; . p® .°

O Overfitting occurs when a model with high capacity fits the noise in the data instead of the

(assumed) underlying relationship:

wajqoid uoybouissp|d Alpbuiq

O model with 20 hidden neurons fits all the training data but at the cost of segmenting the . * 2
space into many disjoint red and green decision regions; . : | .Q o
O model with 3 hidden neurons only has the representational power to classity the data in - . o ®
broad strokes: . . . .
O models the data as two blobs and inferprets the few red points inside the green cluster s 2 7
as outliers (noise); B e e
O could lead to better generalisation on the test set. Co
O always better to use hyper-parameters to control overfitting instead of the number of neurons. e e
o [¢) P i ; 9
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3 hidden neurons

Deep Neural Network - DNN —
() s evcvvrososrosscsosescssosososscssssosossscssssososssocssssos : @
Setting number of layers and their sizes B .
O increasing the size and number of layers in a NN, the capacity of the network increases. . — -
A T
O NN with more neurons can express more complicated functions; §® . e

O Overfitting occurs when a model with high capacity fits the noise in the data instead of the

wa|qoid uoybouIssp|d Albuiq

(assumed) underlying relationship:
O model with 20 hidden neurons fits all the training data but at the cost of segmenting the * °
space info many disjoint red and green decision regions; | .@ o
O model with 3 hidden neurons only has the representational power to classity the data in : ° ®
oroad strokes: . .
O models the data as two blobs and interprets the few red points inside the green cluster B
as outliers (noise); o|° o° °
O could lead to better generalisation on the test set. Co
O always better to use hyper-parameters to control overfitting instead of the number of neurons. SRR IR
Hyper-parameters : L
O batch size: number of events per update (in the back propagation); : : ° -K e )
O epoch: when all of the data has been passed through the network; : g
O dropout: where connections between nodes are randomly dropped for each batch; : G B ikl
number of layers, number of nodes in each of those layers, amount of dropout and choice of k.
activation functions are all important choices with no a-priori favoured values.
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Large R jets: fagging fechnigue with ML algorithms

.......................................................... Top and W tagging

Motivation
z Some of the variables used in tagging techniques contain complementary information;
z combining these observables by creating a multivariate classifier provides higher discrimination.

Godl

O to discriminate W-boson and top-quark jets from light jets;

O to provide a single jet-tagging discriminant that is widely applicable == ° >
INn place of the single jet moment to augment the discrimination of
Mcomb AloNe across a broad prrange.

widely applicable and
more powerful tagger!
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Large R jets: fagging fechnigue with ML algorithms

Top and W taggin

Motivation
z Some of the variables used in tagging techniques contain complementary information;
z combining these observables by creating a multivariate classifier provides higher discrimination.

Goal
O to discriminate W-boson and top-quark jets from light jets; widely applicable and
O to provide a single jet-tagging discriminant that is widely applicable == " > ore sowerful fagger!

INn place of the single jet moment to augment the discrimination of
Mcomb AloNe across a broad prrange.

Strategy
O BDT and DNN are used 1o study the performances of the taggers;

O For the design of all multivariate discriminants, exclusive subsamples of signal and background jets are derived from
the more inclusive sample to be used separately for the training and testing of the discriminant;

O all studies are performed in a wide prirve bin:
O [200,2000] GeV for W boson tagging;
O [350,2000] GeV for top quark tagging;

O Input variables chosen by comparing the performance when using different sets of input variables to find the set of
observables which gives the largest relative background rejection at a fixed relative signal efficiency.
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Large R jets: fagging fechnique with ML algorithms

Trcunmg

Top and W taggin

O event selection to isolate ensembles of jets which are representative of those originating from either W bosons or top quarks
(signal) and gluon or other (hon-top) quarks (background);

O anti-ki R = 1.0 jets, trimming algorithm with Rsup = 0.2 and feut =

O reco jets with 200 < pr < 2000 GeV (W) and 350 < pr < 2000 GeV (top).

O signal jets are defined as hadronically-
decaying W bosons or top quarks when dall
partonic decay products are fully
contained within fixed AR:

1. reconstructed jets are matched o

truth jets;

2. those truth jets are matched to the

truth W-boson and top-quark

oarticles (W, top);

3. their partonic decay products (q,
gz, b) are matched to the initial
reconstructed jef.

5%;

Purpose Train Test
Tagger type W boson Top Quark W boson Top Quark
Truth matching dR(jet,x) < 0.75 | dR(jet,x) < 0.75 | dR(jet,x) < 0.75 | dR(jet,x) <0.75
x=W,q1,92 x=top,q1,92,b x=W.q1,92 x=top,q1,92,b
pt weighting flat flat to QCD to QCD
Truth pr [GeV] [200,2000] [350,2000] [200,2000] [350,2000]
m° [GeV] > 40 > 40 [60, 100] > 120
Neonst > 2 > 2 > 2 > 2
....................................................................................................................... 0O
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Large-R jefs: tagging technique with ML algorithms

Training

Top and W taggin

O event selection to isolate ensembles of jets which are representative of those originating from either W bosons or top quarks
(signal) and gluon or other (hon-top) quarks (background);

O anti-ki R = 1.0 jets, trimming algorithm with Rsup = 0.2 and feut = 5%;

O reco jets with 200 < pr < 2000 GeV (W) and 350 < pr < 2000 GeV (top).

O signal jets are defined as hadronically-
decaying W bosons or top quarks when dall
partonic decay products are fully
contained within fixed AR:

1. reconstructed jets are matched o

truth jets;

2. those truth jets are matched to the

truth W-boson and top-quark

oarticles (W, top);

3. their partonic decay products (q,
gz, b) are matched to the initial
reconstructed jef.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Purpose Train Test
Tagger type W boson Top Quark W boson Top Quark
, dR(jet,x) < 0.75 | dR(jet,x) < 0.75 | dR(jet,x) < 0.75 | dR(jet,x) < 0.75
Truth matching
x=W,q1,92 x=top,q1,92,b x=W.q1,9> x=top,q1,92,b

pt weighting flat flat to QCD to QCD
Truth pr [GeV] [200,2000] [350,2000] [200,2000] [350,2000]

m° [GeV] > 40 > 40 [60, 100] > 120

Neonst > 2 > 2 > 2 > 2

. 0 30% of signal and bkg samples combined and weighted such that the
. pr distribution of signal jets matches the dijets bkg distribution;

. 0 to remove any bias on the performance due to difference in pr

. spectrum of signal and bkg jet samples.

10.02.2020



https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-6847-8.pdf

Large-R jefs: tagging technique with ML algorithms

Training

Top and W taggin

O event selection to isolate ensembles of jets which are representative of those originating from either W bosons or top quarks
(signal) and gluon or other (hon-top) quarks (background);

O anti-ki R = 1.0 jets, trimming algorithm with Rsup = 0.2 and feut = 5%;

O reco jets with 200 < pr < 2000 GeV (W) and 350 < pr < 2000 GeV (top).

. . : : Purpose Train Test
O signal jets are defined as hadronically-
decaying W bosons or top quarks when all Tagger type W boson Top Quark W boson Top Quark
partonic decay products are fully , dR(jet,x) < 0.75 | dR(jet,x) <0.75 | dR(jet,x) < 0.75 | dR(jet,x) < 0.75
: e g . Truth matching
contained within fixed AR: x=W,q1,9> x=top,q1,92,b x=W,q1,9>» x=top,q1,q2,b
. pt weighting flat flat to QCD to QCD
I freuiﬁ?;rs‘fded ets are matched fo Truth pr [GeV] [200,2000] [350,2000] [200,2000] [350,2000]
! calo
2. those truth jets are matched to the m="" [GeV] > 40 > 40 [60, 100] > 120
tfruth W-boson and top-quark Neomst > 2 > 2 > 2 > 2
oarticles (W, top);
3. their partonic decay products (q,
gz, b) are matched to the initial :
reconsfructed jef. v
Purpose Training (Top quark) Training (W boson) Testing
Sample Signal | Background | Signal | Background | Top Signal | W Signal | Background
Number of jets 100 10° 7% 10° 7% 10° 4% 10° 3% 10° 1 x 100
....................................................................................................................... .0
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Lc::rge R jets: fagging fechnique with ML algorithms

e 6 ¢ ¢ ¢ ¢ ¢ & o ¢ o o o o o o o o o o o o o o o o o o o o o o o o °o o o o °o °o o o °o °o o °o °o °o o o o o °o o °o o o o T_Muo ClndeCI in

Choice of variables for BDT
O Fixed relative signal efficiency of 50% (W-boson tagging) and 80% (top-quark tagging);

O observables which give the largest increase in relative performance are sequentially added to the network;

O the smallest set of variables which reaches the highest relative background rejection within statistical uncertainties is selected.

. T T T T T T T T T T TiT T T T. . T T T T T T T T T TiT T -
s¥ 00F = ) oSSR 4 10
~ i _ § s 4'_'_1— =
T 50 - = .
S i i S 7r —
° a0k ATLAS Simulation i O - ATLAS Simulation ]
A% N ~ A% — —
o i s =13 TeV, BDT W Tagging - 0 ° . s = 13 TeV, BDT Top Tagging
S aoL Trimmed anti-k, R = 1.0 jets - e SF Trimmed anti-k, R = 1.0 jets -
= - - = - .
S & e =50% : S 4F e =80% E
§ 20 [- pi™ = [200,2000] GeV — § 3F p'™e = [350,2000] GeV -
- - m*™ > 40 GeV, In"™e < 2.0 ] >  oF °°"‘b > 40 GeV, In™° < 2.0 E
2 101 ; = 2 f ‘ 5
s L < é : 8 < 3
o Y N Y Y S Y B e - Y I O
Q § o . Eu;“' SO Jlo e S RS o E S oo &gl v
S X : .
o ....................................................................................................................... .o
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Lc::rge R jets: fagging fechnique with ML algorithms

e 6 ¢ ¢ ¢ ¢ ¢ & o ¢ o o o o o o o o o o o o o o o o o o o o o o o o °o o o o °o °o o o °o °o o °o °o °o o o o o °o o °o o o o T_Muo ClndeCI in

Choice of variables for DNN
O Fixed relative signal efficiency of 50% (W-boson tagging) and 80% (top-quark tagging);

O variables are not added in succession due to the time requirements 1o frain the large number of networks;

O chosen by selecting variables according to their dependence on the momentum scale of the jet subsiructure objects, what
features of the substructure they describe and their dependence on other subsiructure variables.

32 60r I ] 2 of —
o - ] - 52 3 E

= — 1 12 voof "1 13
= ~ 7 = 8F — &
O - - (@) v _ =
S F : B F E
. — _ | D B n
o 40[ - S 6L E
O i : N =
S i _ _ - e 5F : . =
S 30 ATLAS Simulation — 3 : ATLAS Simulation :
2 T (s =13 TeV, DNN W Tagging - > 4F (s = 13 TeV, DNN Top Tagging -
8 oL Trimmed anti-k, R = 1.0 jets - S af Trimmed anti-k, R=1.0jets
0 i e =50% ] P - €5g=80% :
i - N > = U u
c_-oB- i true = [200,2000] GeV _ -oc_-U- 2 :_ tr ¢ =1[350,2000] GeV _:
S:’ 10 - mcorlrlb > 40 GeV, In"™° <2.0 1 &’ 1 E_ mCornID > 40 GeV, In'™¢| < 2.0 _f
0 : | | | | | | | | : ob_| | | | | | | ]

GI'QU 0 7Grou o QGI'OU 7o SGI‘QU 0 4Grou 7o 5Gl’oup 6Group 7Gro Up 8Gro U,D 9 GI'OU o 1 GI'OU 0 Group GI'OU 0 4Grou 0 GroUp 5Gr°U,D 7Gro Up 8Gro Up 9

Training input groups Training input groups
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Large-R jets: tagging technique with ML algorithms Top and ¥ agging
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ATLAS Simulation Preliminary
s =13 TeV

\
\ BDT W tagger

ATILASI SimLIation Preliminary
s =13 TeV

BDT Top tagger

p‘T"'“‘=[1 000,1500] GeV
me@°>40 GeV, m[™"<2.0

Top Jet
QCD Jet
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Results and final choice /
y

O BDT and DNN algorithms result in a single
discriminant that allows for the classification of
a jet as either a top-quark or gluon/other (hon-
top) quark jet and a W-boson or gluon/other
(hon-top) quark jet;
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O performance of the two new taggers is studied
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1. discrimination power of the BDTs and BDT W tagger score BDT Top tagger score

DNNS are compared with respect to the
simple reference taggers 1o estimate the
gain expected by adding more variables
and taking advantage of non-linear
correlations;
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2. performance of BDTs and DNNs are

compared with each other to determine if
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Large R jets: fagging fechnigue with ML algorithms
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Performances of the taggers
O characterised by the background rejection, evaluated as a function of jet prirve, for a fixed signal efficiency of 50% (W-boson
tagging) and 80% (top-quark tagging).

’-B’ sl L l | I | | [ I | | [ | | | | L L ’\C) J L | I | L | I | L | L I L |
: 2 140 e 1 72 60 L -
Results for W-fqgglng: m 140 -4 t2-var optimised ?_TL;:gTS{/mulatlon 1 0 - t2var optimised ?_TL/:?TS{/mulatlon i
" Ny - agger s= e 1 — agger S= e i
O performonce lmprovemen’rs bGYOﬂd the cut- — 120 DNN W Trimmed anti-k, R=1.0jets _| 50 =+ DNN top Trimmed anti-k, R =1.0 jets -
H H ~ "—4+— BDT W mtruel <2.0 . ~ | _ BDT t |ntrue| <2.0 ]
based ’ragger§ are highest at low jet pr and S : W tagging at < ,, = 50% 1 s __,: op Top tagging at < = 80% -
decrease at higher prive; 5 100 1% - -
O due to the merging of calorimeter energy [ i T 1 @ - ]
oy o - —— — - -
depositions and subsequent loss of granularity B 80 e 12 b E
In discerning substructure information; S L —— T e .1 © " . )
2 LT = 2 :
& I 1 & 20 —
mn 40 — —- 00 i _
- . - —— -
: - h 10— — .
Results for top-tagging: 207 : i — i
0 improvements in performgnce Ore more O :I | I 1 1 1 | | 1 1 | I .| | | 1 1 | | 1 1| | 1 1 1 | | I | | | | I: O:| 1 1 1 | | 1 1 | | 1 1 | | 1 1 | 1 1 | I | I | T 1 1 1 T || Tf
sizeable, showing increases in background 200 400 600 800 1000 1200 1400 1600 1800 200C 400 600 800 1000 1200 1400 1600 1800 2000
rejection of roughly a factor of two over the . pie [GeV] pie [GeV]
entire kinematic range studied; A
O due to the greater complexity of the top
decay in contrast to that of the isolated W. among the observables studied here, no single observable adequately

captures alone the full set of features that provide ability to discriminate
signal from background!
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Large R jets: fagging fechnigue with ML algorithms

W boson tagging Top quark tagging
DNN Test groups Chosen inputs DNN test groups Chosen inputs

Observable 1 2 3 4 5 6 7 8 9 BDT DNN 1 2 3 4 5 6 7 8 9 BDT DNN
n cOmb o o ©o o o o o o o o o o o o o o o 0 0
PT o o o o o o o o o o o o o o o
e3 o o o o o o o o o
Cr o o o o o o o o o o o o o o o
Dy o o o o o o o o o o o o o o o o o
T1 o o o o o o o o o
(%) o o o o o o o o o
173 o o o o
21 o o o o o o o o o o o o o o o o o
732 o o o o o o o o o
ng ©o o o o o o o o o

P ©o o o o o o o o o

as ©o o o o o o o o o

A ©o o o o o o o o o

Zeut o o o o o o o

Jdio o o o o o o o ©o o o o o o o
Jdy ©o o o o o o o
KtDR o o o o o o o

Ouw ©o o o o o o o
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Large R jets: fagging fechnigue with ML algorithms

W-Boson Tagging | Top-Quark Tagging
Observable | BDT DNN BDT DNN

ECF,
ECF,
ECF;

0

D,

®
O 0O O 0O 0 0 O

O 0O 0O 0 0 0O 0O 0 0o o

O O O O O O

Silvia Biondi - Corso di Doftorato - AA 2019/2020 49 10.02.2020



Large R jets: fagging fechnigue with ML algorithms

O cccrcrcncsccccecececoscoscoscoccscocoscocoscoscossoscscscoscoscoscossosscscscscscscsossossoscscscscsoscsossosscsscscsccsccsccsccscsccscscscccscscsscsd)

Setting Name Description Chosen Value
BoostType Type of boosting technique GradientBoost
NTrees Number of trees in the forest 500
MaxDepth Max depth of the decision tree allowed 20
Minimum fraction of training events
MinimumNodeSize required in a leaf node 1.0%
Shrinkage Learning rate for GradientBoost algorithm 0.5
Use only a random (bagged) subsample of all events
UseBaggedBoost for growing the trees in each iteration True
Relative size of bagged event sample
BaggedSampleFraction | to original size of the data sample 0.5
SeparationType Separation criterion for node splitting Ginilndex
Number of grid points in variable range used
nCuts in finding optimal cut in node splitting 500
<
=100
S s
s
s 20
10
7
o [ ] o 5
BDT parameters optimisation \
2
1
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Large R jets: fagging fechnigue with ML algorithms

DNN hyperparameters optimisation

70 92

= : . o . < . . .
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Lc::rge R jets: fagging fechnique with ML algorithms
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Ldrge R jets: fagging fechnique with ML algorithms
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Ldrge R jets: fagging fechnique with ML algorithms
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Large-R jefs: tagging technique with ML algorithms
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