

Corso di Dottorato - 2019/2020

A DOOST TO Higgs Physics: new regimes at high energy

<u>Silvia Biondi</u> University & INFN of Bologna <u>silvia.biondi@cern.ch/silvia.biondi@bo.infn.it</u>

Course outline

• Theory reminder

• Higgs boson production and decay modes

• Higgs boson discovery by ATLAS and CMS

• Higgs boson mass measurement by ATLAS and CMS

• Overview of ATLAS and CMS analyses about Higgs

O Signal/background discrimination techniques

• boosted regimes O multivariate analysis and deep neural network

• Signal extraction techniques **O** likelihood and test statistic • CLs method

• ttH analysis: an example

- tagging, large-radius jets substructure, re-clustering

Signal/background discrimination techniques - II

Multivariate analysis technique

Problem

- Analysis aim: to identify events that are both rare and overwhelmed by a wide variety of processes that mimic the signal.
- Conventional approach by using cuts on individual kinematic variables far from be optimal!

Multivariate analysis technique

Problem

- Analysis aim: to identify events that are both rare and overwhelmed by a wide variety of processes that mimic the signal.
- Conventional approach by using cuts on individual kinematic variables far from be optimal!

Multivariate analysis technique

Problem

- Analysis aim: to identify events that are both rare and overwhelmed by a wide variety of processes that mimic the signal.
- Conventional approach by using cuts on individual kinematic variables far from be optimal!

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Supervised training

a set of training events with correct category association is given

Unsupervised training

no "a priori" categories are given and the algorithm has to find them by itself.

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Supervised training a set of training events with correct category association is given

Linear classifier

- a group of **rectangular cuts** on selected variables.
- A sequence of univariate analyser, no combination of variables is achieved and a cut on a variable does not depend on another one.

Unsupervised training

no "a priori" categories are given and the algorithm has to find them by itself.

Non-linear classifier

- "non-linear" function: a single cut on a variable depends simultaneously on all the other variables
- cuts not necessarily on a linear way

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Supervised training a set of training events with correct category association is given

Linear classifier

- a group of **rectangular cuts** on selected variables.
- A sequence of univariate analyser, no combination of variables is achieved and a cut on a variable does not depend on another one.

Unsupervised training no "a priori" categories are given and the algorithm has to find them by itself.

Boosted Decision Tree

Deep Neural Network

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Testing process

- wrt training ones);
- comparison to those of the training test;
- training sample.

• discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent

• good agreement is crucial: it assures that the definition of discriminating variables is not due to a specific feature of

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Testing process

- wrt training ones);
- comparison to those of the training test;
- good agreement is crucial: it assures that the definition of discriminating variables is not due to a specific feature of training sample.

• discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Testing process

- wrt training ones);
- comparison to those of the training test;
- training sample.

• discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent

• good agreement is crucial: it assures that the definition of discriminating variables is not due to a specific feature of

Reasons

- too few degrees of freedom;
- too many model parameters of an algorithm adjusted to too few data points.

Consequences

- false increase in performance over the objectively achievable one, if measured on the training sample;
- effective performance decrease when measured in an independent testing sample.

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Testing process

- wrt training ones);
- comparison to those of the training test;
- training sample.

• discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent

• good agreement is crucial: it assures that the definition of discriminating variables is not due to a specific feature of

Solution

O optimisation of specific parameters of the ML algorithm used (i.e., number of nodes, number of variables, deep of the tree); **o** independent samples for test and training; **O enough statistics** for samples to avoid fluctuations.

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Testing process

- wrt training ones);
- comparison to those of the training test;
- training sample.

Classification process

- the training step;
- o after this, the events of real data are split into signal and background classes.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent

• good agreement is crucial: it assures that the definition of discriminating variables is not due to a specific feature of

• assign objects or events to one of the possible discrete classes (e.g. signal and background) by the classifier found in

Training (or learning) process

• as input a set of events, characterised by the **feature variables**; • to define a function (**classifier**) that will be used in the classification step.

Testing process

- wrt training ones);
- comparison to those of the training test;
- training sample.

Classification process

- the training step;
- of the events of real data are split into signal and background classes.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• discriminant variable distributions obtained from other additional MC signal and bkg samples (statistically independent

• good agreement is crucial: it assures that the definition of discriminating variables is not due to a specific feature of

• assign objects or events to one of the possible discrete classes (e.g. signal and background) by the classifier found in

Different evaluation methods

Multivariate analysis technique: classification evaluation

Separation

- **O** y_s and y_B are the signal and background probability density functions of y, respectively;
- zero for identical signal and background shapes and 1 for shapes with no overlap.

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_S(y) - \hat{y}_B(y))^2}{\hat{y}_S(y) + \hat{y}_B(y)} dy$$

Correlation

- two random variables X and Y;
- Cov is the covariance and $\sigma(X)$ ($\sigma(Y)$) is the variance of X (Y).

$$\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Importance ranking

- by evaluating the number of times the variables are used to split decision tree nodes;
- by weighting each split occurrence (by using the same variable) by the separation achieved and by the number of events in the node.

Multivariate analysis technique: classification evaluation

Separation

- o_{y_s} and y_B are the signal and background probability density functions of y, respectively;
- zero for identical signal and background shapes and 1 for shapes with no overlap.

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_S(y) - \hat{y}_B(y))^2}{\hat{y}_S(y) + \hat{y}_B(y)} dy$$

Correlation

- two random variables X and Y;
- Cov is the covariance and $\sigma(X)$ ($\sigma(Y)$) is the variance of X (Y).

$$\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Importance ranking

- by evaluating the number of times the variables are used to split decision tree nodes;
- by weighting each split occurrence (by using the same variable) by the separation achieved and by the number of events in the node.

Multivariate analysis technique: classification evaluation

Separation

- **O** y_s and y_B are the signal and background probability density functions of y, respectively;
- zero for identical signal and background shapes and 1 for shapes with no overlap.

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_S(y) - \hat{y}_B(y))^2}{\hat{y}_S(y) + \hat{y}_B(y)} dy$$

Correlation

- two random variables X and Y;
- Cov is the covariance and $\sigma(X)$ ($\sigma(Y)$) is the variance of X (Y).

$$\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Importance ranking

- by evaluating the number of times the variables are used to split decision tree nodes;
- by weighting each split occurrence (by using the same variable) by the separation achieved and by the number of events in the node.

• Decision tree is a **binary tree structure**:

• repeated binary decisions (yes/no) taken on one single variable at a time, until stop criteria fulfilled;

• phase space split into many regions eventually classified as signal or bkg • depending on majority of training events that end up in the final leaf node. • a sequence of **binary splits applied to the data**, using discriminating variables.

Final leaves where classification of events lives

• Decision tree is a **binary tree structure**: • repeated binary decisions (yes/no) taken on one single variable at a time, until stop criteria fulfilled;

• phase space split into many regions eventually classified as signal or bkg • depending on majority of training events that end up in the final leaf node. • a sequence of **binary splits applied to the data**, using discriminating variables.

• Instability with respect to **statistical fluctuations** in the training sample.

• Decision tree is a **binary tree structure**:

• repeated binary decisions (yes/no) taken on one single variable at a time, until stop criteria fulfilled;

• phase space split into many regions eventually classified as signal or bkg • depending on majority of training events that end up in the final leaf node. • a sequence of **binary splits applied to the data**, using discriminating variables.

• Instability with respect to **statistical fluctuations** in the training sample.

Boosting

- Extension of this concept from one tree to several trees which form a "forest";
- trees are derived from the same training ensemble by reweighting events;
- finally combined into a single classifier which is given by an average of the individual decision trees.

Advantages

more stable response of the decision trees, wrt fluctuations in the training sample, thus enhancing the performance wrt a single tree

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Training a decision tree

- starts with the root node, where an initial splitting criterion for the full training sample is determined;
- split results in two subsets of training events, each going through the same algorithm determining the splitting criteria of the next nodes;
- procedure is repeated until the whole tree is built.
- At each node, the split is determined by **finding the variable and** the corresponding cut value that provides the best separation between signal and background events that reach that node • optimised by scanning over the variable range • bin granularity plays an important role!
- Addition of nodes stops once the number of events that should be split is **below a threshold** which is specified in the BDT configuration;
- **•** final leaves are classified as signal or background according to the class the majority of events belongs to.

When do we stop?

- In principle, the splitting could continue until each leaf node contains only signal or only background events;
- such a decision tree would be strongly **overtrained**!

When do we stop?

- In principle, the splitting could continue until each leaf node contains only signal or only background events;
- such a decision tree would be strongly **overtrained**!

Pruning

- process of cutting back a tree from the bottom up after it has been built to its maximum size;
- **•** remove statistically insignificant nodes and thus reduce the overtraining of the tree;
- why from the bottom up and not directly interrupting the growing? • apparently insignificant splits can nevertheless lead to good splits further down the tree.
- Different algorithms available, to be optimised for the specific case through parameters.

Biological motivations and connections • Basic computational unit of the brain is a **neuron**;

- Each neuron receives input signals from its **dendrites** and produces output signals along its (single) **axon**;
- axon eventually branches out and **connects via synapses to dendrites of other neurons**.
- the dendrites of the other neuron based on the synaptic strength at that synapse (e.g. w_0);
- (positive weight) or inhibitory (negative weight)) of one neuron on another.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• \sim 86 billion neurons can be found in the human nervous system and they are connected with approximately 10¹⁴ - 10¹⁵ synapses;

• In the computational model of a neuron, the signals that travel along the axons (e.g. x_0) interact multiplicatively (e.g. $w_0 x_0$) with

• idea is that the synaptic strengths (the weights w) are learnable and control the strength of influence (and its direction: excitory

Basic model

- the dendrites carry the signal to the cell body where they all get summed.
- If the final sum is above a certain threshold, the neuron can fire, sending a spike along its axon.

0 Silvia Biondi - Corso di Dottorato - AA 2019/2020

Computational model

- we assume that the precise timings of the spikes do not matter, and that only the frequency of the firing communicates information;
- model the firing rate of the neuron with an activation function f, which represents the frequency of the spikes along the axon.

- Neural Networks are modeled as **collections of neurons** that are connected in an acyclic graph.
- Outputs of some neurons can become inputs to other neurons.
- Cycles are not allowed since that would imply an infinite loop in the forward pass of a network: layers of neurons.
- connected, but neurons within a single layer share no connections.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• instead of an amorphous blobs of connected neurons, Neural Network models are often organized into distinct

• A most common layer type is the fully-connected layer in which neurons between two adjacent layers are fully pairwise

General structure

• Each layer consists of many nodes;

• input layer has one node per input feature;

- output layer can have as many outputs as desired: • just one for the case of binary classification or one per class for multi class output;
- each hidden layer in between can have an arbitrary number of nodes.
- Connections between each of these nodes are the associated parameters θ (weights): • no prior intuition for the initialisation of weights; data (back propagation).

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Ο θ can be initialised randomly, and learning happens via the **updating of the weights after seeing some training**

Training a Neural Network

• series of forward passes:

 \circ vector of **inputs x** is multiplied by the **weights \theta** connecting the first hidden layer;

Training a Neural Network

• series of forward passes:

- \circ vector of inputs x is multiplied by the weights θ connecting the first hidden layer;
- all connections to each node in the hidden layer are summed (S);

Training a Neural Network

• series of forward passes:

- vector of inputs x is multiplied by the weights θ connecting the first hidden layer;
- all connections to each node in the hidden layer are summed (S);
- S is passed through the **activation function**, to calculate the **node scores**:
 - analogous to an input feature from the input layer.

Activation function

• mathematical function used to transform the inputs;

- The Rectified Linear Unit (ReLU) computes the function f(x)=max(0,x):
 greatly accelerate the convergence of stochastic gradient descent compared to other functions;
 - can be implemented by simply thresholding a matrix of activations at zero.

Training a Neural Network

• series of forward passes:

- \circ vector of inputs x is multiplied by the weights θ connecting the first hidden layer;
- all connections to each node in the hidden layer are summed (S);
- S is passed through the activation function, to calculate the node scores:
 - analogous to an input feature from the input layer;
- subsequently passed forward identically until reaching the output layer, where the node scores are finally the actual network output.

Setting number of layers and their sizes • increasing the size and number of layers in a NN, the capacity of the network increases.

• NN with more neurons can express more complicated functions;

0.. Silvia Biondi - Corso di Dottorato - AA 2019/2020

3 hidden neurons

6 hidden neurons

20 hidden neurons

Setting number of layers and their sizes • increasing the size and number of layers in a NN, the capacity of the network increases.

• NN with more neurons can express more complicated functions;

• Overfitting occurs when a model with high capacity fits the noise in the data instead of the (assumed) underlying relationship:

• model with 20 hidden neurons fits all the training data but at the cost of segmenting the space into many disjoint red and green decision regions;

6 hidden neurons

20 hidden neurons

Setting number of layers and their sizes

• increasing the size and number of layers in a NN, the capacity of the network increases.

• NN with more neurons can express more complicated functions;

- Overfitting occurs when a model with high capacity fits the noise in the data instead of the (assumed) underlying relationship:
 - model with 20 hidden neurons fits all the training data but at the cost of segmenting the space into many disjoint red and green decision regions;
 - model with 3 hidden neurons only has the representational power to classify the data in broad strokes:
 - models the data as two blobs and interprets the few red points inside the green cluster as outliers (noise);
 - could lead to better **generalisation** on the test set.

• always better to use hyper-parameters to control overfitting instead of the number of neurons.

6 hidden neurons

20 hidden neurons

Setting number of layers and their sizes

• increasing the size and number of layers in a NN, the capacity of the network increases.

• NN with more neurons can express more complicated functions;

- Overfitting occurs when a model with high capacity fits the noise in the data instead of the (assumed) underlying relationship:
 - model with 20 hidden neurons fits all the training data but at the cost of segmenting the space into many disjoint red and green decision regions;
 - model with 3 hidden neurons only has the representational power to classify the data in broad strokes:
 - models the data as two blobs and interprets the few red points inside the green cluster as outliers (noise);
 - could lead to better **generalisation** on the test set.

• always better to use hyper-parameters to control overfitting instead of the number of neurons.

Hyper-parameters

• **batch size**: number of events per update (in the back propagation); **O epoch:** when all of the data has been passed through the network; • dropout: where connections between nodes are randomly dropped for each batch;

number of layers, number of nodes in each of those layers, amount of dropout and choice of activation functions are all important choices with no a-priori favoured values.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

6 hidden neurons

20 hidden neurons

Motivation

Some of the variables used in tagging techniques contain complementary information; combining these observables by creating a multivariate classifier provides higher discrimination.

Goal

- to discriminate **W-boson and top-quark jets from light jets**;
- to provide a **single jet-tagging discriminant** that is widely applicable in place of the single jet moment to augment the discrimination of m_{comb} alone across a broad p_T range.

Top and W

widely applicable and more powerful tagger!

ta	a	d	in	d
		-	_	

Motivation

Some of the variables used in tagging techniques contain complementary information; combining these observables by creating a multivariate classifier provides higher discrimination.

Goal

- to discriminate **W-boson and top-quark jets from light jets**;
- to provide a **single jet-tagging discriminant** that is widely applicable in place of the single jet moment to augment the discrimination of m_{comb} alone across a broad p_T range.

Strategy

• **BDT** and **DNN** are used to study the performances of the taggers;

- the more inclusive sample to be used separately for the training and testing of the discriminant;
- all studies are performed in a wide p_T^{true} bin: • [200,2000] GeV for W boson tagging; • [350,2000] GeV for top quark tagging;
- observables which gives the largest relative background rejection at a fixed relative signal efficiency.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Top and W

widely applicable and more powerful tagger!

• For the design of all multivariate discriminants, exclusive subsamples of signal and background jets are derived from

• Input variables chosen by comparing the performance when using different sets of input variables to find the set of

ta	C	C	in	C
	9	J		J

Training

• event selection to isolate ensembles of jets which are representative of those originating from either W bosons or top quarks (signal) and gluon or other (non-top) quarks (background); • **anti-k** $\mathbf{R} = 1.0$ jets, trimming algorithm with $R_{sub} = 0.2$ and $f_{cut} = 5\%$; • recojets with 200 < pt < 2000 GeV (W) and 350 < pt < 2000 GeV (top).

- signal jets are defined as hadronicallydecaying W bosons or top quarks when all partonic decay products are fully contained within fixed ΔR :
 - 1. reconstructed jets are matched to truth jets;
 - 2. those truth jets are matched to the truth W-boson and top-quark particles (W, top);
 - 3. their partonic decay products $(q_1,$ **q₂, b)** are matched to the initial reconstructed jet.

	Tra	ain	Te	est
	W boson	Top Quark	W boson	Top Qua
<u>م</u>	dR(jet, x) < 0.75	dR(jet, x) < 0.75	dR(jet, x) < 0.75	dR(jet, x)
B	$x = W, q_1, q_2$	$x = top, q_1, q_2, b$	$x = W, q_1, q_2$	$x = top, q_1,$
	flat	flat	to QCD	to QC
]	[200,2000]	[350,2000]	[200,2000]	[350,20
	> 40	> 40	[60, 100]	> 120
	> 2	> 2	> 2	> 2

Training

• event selection to isolate ensembles of jets which are representative of those originating from either W bosons or top quarks (signal) and gluon or other (non-top) quarks (background); • **anti-k** $\mathbf{R} = 1.0$ jets, trimming algorithm with $R_{sub} = 0.2$ and $f_{cut} = 5\%$; • recojets with 200 < pt < 2000 GeV (W) and 350 < pt < 2000 GeV (top).

- signal jets are defined as hadronicallydecaying W bosons or top quarks when all partonic decay products are fully contained within fixed ΔR :
 - 1. reconstructed jets are matched to truth jets;
 - 2. those truth jets are matched to the truth W-boson and top-quark particles (W, top);
 - 3. their partonic decay products $(q_1,$ **q₂, b)** are matched to the initial reconstructed jet.

	Tra	ain	Te	est
	W boson	Top Quark	W boson	Top Qua
a	dR(jet, x) < 0.75	dR(jet, x) < 0.75	dR(jet, x) < 0.75	dR(jet, x)
B	$x = W, q_1, q_2$	$x = top, q_1, q_2, b$	$x = W, q_1, q_2$	$x = top, q_1,$
	flat	flat	to QCD	to QC
]	[200,2000]	[350,2000]	[200,2000]	[350,20
	> 40	> 40	[60, 100]	> 120
	> 2	> 2	> 2	> 2

• 30% of signal and bkg samples combined and weighted such that the p_T distribution of signal jets matches the **dijets bkg distribution**; **O to remove any bias on the performance** due to difference in pt spectrum of signal and bkg jet samples.

Training

• event selection to isolate ensembles of jets which are representative of those originating from either W bosons or top quarks (signal) and gluon or other (non-top) quarks (background); **O anti-kt R = 1.0 jets**, trimming algorithm with $R_{sub} = 0.2$ and $f_{cut} = 5\%$; • recojets with 200 < pt < 2000 GeV (W) and 350 < pt < 2000 GeV (top).

- signal jets are defined as hadronicallydecaying W bosons or top quarks when all partonic decay products are fully contained within fixed ΔR :
 - 1. reconstructed jets are matched to truth jets;
 - 2. those truth jets are matched to the truth W-boson and top-quark particles (W, top);
 - 3. their partonic decay products $(q_1,$ **q₂, b)** are matched to the initial reconstructed jet.

Purpose	Trainin	g (Top quark)	Trainin	g (W boson)		Testing	
Sample	Signal	Background	Signal	Background	Top Signal	W Signal	Background
Number of jets	106	106	7×10^{5}	7×10^{5}	4×10^{5}	3×10^{5}	1×10^{6}

Purpose	Tra	ain	Te	est
Tagger type	W boson	Top Quark	W boson	Top Qua
Truth matching	dR(jet, x) < 0.75	dR(jet, x) < 0.75	dR(jet, x) < 0.75	dR(jet, x)
II util matering	$x = W, q_1, q_2$	$x = top, q_1, q_2, b$	$x = W, q_1, q_2$	$x = top, q_1,$
$p_{\rm T}$ weighting	flat	flat	to QCD	to QC
Truth $p_{\rm T}$ [GeV]	[200,2000]	[350,2000]	[200,2000]	[350,20
m ^{calo} [GeV]	> 40	> 40	[60, 100]	> 120
N ^{const}	> 2	> 2	> 2	> 2

Choice of variables for BDT

• Fixed relative signal efficiency of 50% (W-boson tagging) and 80% (top-quark tagging);

• observables which give the largest increase in relative performance are sequentially added to the network;

• the smallest set of variables which reaches the highest relative background rejection within statistical uncertainties is selected.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Top and W

ta	a	d	in	d
		-	_	

Choice of variables for DNN

• Fixed relative signal efficiency of 50% (W-boson tagging) and 80% (top-quark tagging);

- variables are **not added in succession** due to the time requirements to train the large number of networks;
- features of the substructure they describe and their dependence on other substructure variables.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Top and W

• chosen by selecting variables according to their dependence on the momentum scale of the jet substructure objects, what

ta	a	d	in	d
		-	_	

Results and final choice

• BDT and DNN algorithms result in a **single** discriminant that allows for the classification of **a jet** as either a top-quark or gluon/other (nontop) quark jet and a W-boson or gluon/other (non-top) quark jet;

• performance of the two new taggers is studied more quantitatively in two ways:

- 1. discrimination power of the BDTs and DNNS are **compared with respect to the** simple reference taggers to estimate the gain expected by adding more variables and taking advantage of non-linear correlations;
- 2. performance of BDTs and DNNs are compared with each other to determine if one algorithm is able to extract more information than the other.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

 10^{-3}

^{\$}10^{−1}

Arbitrary

10⁻²

Arbitrary

10⁻²

 10^{-3}

Performances of the taggers

• characterised by the background rejection, evaluated as a function of jet p_ttrue, for a fixed signal efficiency of 50% (W-boson) tagging) and 80% (top-quark tagging).

Results for W-tagging:

- performance **improvements** beyond the cutbased taggers are highest at low jet p₁ and decrease at higher prtrue;
- due to the merging of calorimeter energy depositions and subsequent loss of granularity in discerning substructure information;

Results for top-tagging:

- **O** improvements in performance are more sizeable, showing increases in background rejection of roughly a factor of two over the entire kinematic range studied;
- due to the greater complexity of the top **decay** in contrast to that of the isolated W.

Top and W tagging

signal from background!

• •	•	•	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	
	4	46	6																																										1().	0	2	.2	20)2	20	

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Supporting material

	W	bosc	on ta	ggin	g							Тој	p qu	ark t	aggii	ng							
	DN	NN T	est g	group	S					Chose	n inputs	DN	JN to	est g	C	Chosei	n inputs						
Observable	1	2	3	4	5	6	7	8	9	BDT	DNN	1	2	3	4	5	6	7	8	9	В	BDT	DNN
m ^{comb}	0	ο		0	0	0	ο	0	0	0	0		0	0	0		0	ο	0	0	0)	0
p_{T}	0	ο			0	0		0	0	0	0			ο	0			0	0	0	0)	0
<i>e</i> ₃	0	0				0			0						0			0		0	0)	0
C_2			0	0	0		0	0	0		0	0	0	0		0	0		0	0			0
D_2			0	0	0		0	0	0	0	0	0	0	0		0	0		0	0	0)	0
$ au_1$	0	0				0			0	0					0			0		0			0
$ au_2$	0	0				0			0						0			0		0	0)	0
$ au_3$															0			0		0			0
$ au_{21}$			0	0	0		0	0	0	0	0	0	0	0		0	0		0	0	0)	0
$ au_{32}$												0	0	0		0	0		0	0	0)	0
$R_2^{\rm FW}$			0	0	0	0	0	0	0	0	0												
\mathcal{P}			0	0	0	0	0	0	0	0	0												
a_3			0	0	0	0	0	0	0	0	0												
Α			0	0	0	0	0	0	0	0	0												
Zcut			0	0	0		0	0	0		0												
$\sqrt{d_{12}}$		0				0	0	0	0	0	0					0	0	0	0	0	0)	0
$\sqrt{d_{23}}$																0	0	0	0	0	0)	0
KtDR		0				0	0	ο	0	0	0												
Q_w																0	0	0	0	0	0)	0

	W-Bos	son Tagging	Top-Q	uark Tagging
Observable	BDT	DNN	BDT	DNN
ECF ₁		0	0	0
ECF_2	0	o		0
ECF_3	0	0	0	o
C_2		0	0	0
D_2	0	o	0	o
$ au_1$	0	0		0
τ_2		0	0	0
$ au_3$				0
$ au_{21}$	0	0	0	0
τ_{32}			0	0
$R_2^{\rm FW}$	0	0		
S	0	0		
${\cal P}$	0	0		
${\mathcal D}$		0		
a_3	0	0		
Α	0	0		
$T_{\rm MIN}$				
$T_{\rm maj}$				
Z _{CUT}		0		
μ_{12}		0		
$\sqrt{d_{12}}$		0	0	0
$\sqrt{d_{23}}$			0	0
KtDR	0	0		
Q_w			0	0

0 Silvia Biondi - Corso di Dottorato - AA 2019/2020

ing technique with ML algorithms

Setting Name	Description	Chosen Value	W Jet, p _T ³⁵³ =[200,2000] GeV, m ³⁵³ >40 GeV, h _l l ³⁵⁴ MinNodeSize:1.0, nCuts:20, BaggedSampleFract											, ηl Fracti					
BoostType	Type of boosting technique	GradientBoost									epth	100	21.5	35.9	42.4	45.2	46.2	46.2	45.
NTrees	Number of trees in the forest	500									axD	50	21.5	35.9	42.4	45.2	46.2	46.2	45.
MaxDepth	Max depth of the decision tree allowed	20									Σ	20	21.5	36	42.7	45.3	46.2	46.3	45.
MinimumNodeSize	Minimum fraction of training events required in a leaf node	1.0%										10 7	24.2	35.6 34.3	41.2 37.8	43.8 40.8	45.3 43.4	45.8 44.3	45.
Shrinkage	Learning rate for GradientBoost algorithm	0.5										5	19.8	27.4	31.2	35.9	40.2	41.8	43.
UseBaggedBoost	Use only a random (bagged) subsample of all events for growing the trees in each iteration	True										3	15.2	18.8	22.4	25.5	30.8	33.4	36.
BaggedSampleFraction	Relative size of bagged event sample to original size of the data sample	0.5										2 1	13.3 4.1	15.3 13.3	17 14	18 14.3	23.1 15.2	24.9 15.6	26.4 15.
SeparationType	Separation criterion for node splitting	GiniIndex		ATL	AS Si	mulat	tion Pr	relimi	narv				10	50	100	200	500	850	200
nCuts	Number of grid points in variable range used in finding optimal cut in node splitting	500	Vs=13TeV, BDT W Tagging, ∈ ^{rel} sig=50% W Jet, p _T ^{truth} =[200,2000] GeV, m ^{calo} >40 GeV, h _l l ^{truth} <2.0 MinNodeSize:1.0, nCuts:20, BaggedSampleFraction:0.5																
		pth	100	9	13	20	35	86	135	331	-30	- Lin							
		XDe	50	9	14	22	35	78	117	307		e E							
	Ma	20	10	17	21	36	* ₇₂	134	315	-25	50,E								
		10	11	15	19	35	75	104	248	-20									
		7	11	13	19	29	55	85	203		g B								
DD.		5	10	13	17	23	50	73	157	1:	50. <u>c</u>								
DU		3	11	12	15	20	34	5 0	102	-10	20 ^E								
			2	11	13	13	16	26	38	85	-50	0							
			1	10	12	12	15	21	28	57		-							
				10	50	100	200	500	850	2000									

ATLAS Simulation Preliminary

s=13TeV, BDT W Tagging, ∈^{rel}_{sig}=50% ~I^{truth}<2.0

es

DNN hyperparameters optimisation

Silvia Biondi - Corso di Dottorato - AA 2019/2020

rejectio

3ackground

Performances of the taggers

- O Distributions showing comparison of the BDT and DNN taggers performance to the simple W-boson tagger based on a simple fixed cut on the mass and a selection on the D₂ observable in a low-p₁ true(top left) and highp₁ true (top right) bin.
- The background rejection for a fixed 50% signal efficiency working point is also presented (bottom), where a selection defined by a requirement on the jet mass is followed by a D₂, BDT or DNN requirement optimised as a function of the jet p₁ true.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

