

Corso di Dottorato - 2019/2020

A DOOST TO Higgs Physics: new regimes at high energy

<u>Silvia Biondi</u> University & INFN of Bologna <u>silvia.biondi@cern.ch/silvia.biondi@bo.infn.it</u>

Course outline

• Theory reminder

• Higgs boson production and decay modes

• Higgs boson discovery by ATLAS and CMS

• Higgs boson mass measurement by ATLAS and CMS

• Overview of ATLAS and CMS analyses about Higgs

• Signal/background discrimination techniques • boosted regimes • multivariate analysis and deep neural network

• Signal extraction techniques **O** likelihood and test statistic • CLs method

• ttH analysis: an example

- tagging, large-radius jets substructure, re-clustering

.

ttH analysis: an example ,

Integrated luminosity

• highest luminosity ever reached in few months;

 \circ 2015 + 2016 + 2017 + 2018 = **Run 2**

• 139 fb⁻¹ used in the analyses.

- delivered luminosity from the start of stable beams until ATLAS goes to standby mode for the beam dump;
- **O** recorded luminosity reflects the data acquisition inefficiency;
- good for physics reflects the criteria applied to ensure the quality of data for analyses.

The $ttH (H \rightarrow bb)$ channel 0

 $\overline{c}\overline{c}$

100

The $ttH (H \rightarrow bb)$ channel

The ttH ($H \rightarrow bb$) channel

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• Characteristics:

- 0/1/2 leptons (e, mu) from W-decays;
- at least 8/6/4 jets;
- at least 4 b-jets from top and Higgs decays;
- Higgs boson reconstruction possible but challenging due to the combinatorics.

• Major challenge:

- irreducible tt+bb background has large theory uncertainty in leptonic channels;
- **QCD multijet background** in all-hadronic channel.

ttH analysis - Objects definition

- O Identification: to determine if reco candidates are signal-like or background-like objects
 - cluster (for **electrons**);
 - algorithms matching tracks from ID and MS (for **muons**) or from ID and topological clusters in calo (for **jets**);
 - information (for **taus**).

• Isolation: to disentangle prompt objects from others

the others close to it and how much it matches with the **primary vertex**;

• Quality: to further discriminate signal from background

• requirements on tracks energy, distance from primary vertex, number of tracks and signals in the detectors.

	Leading p _T	Subleading pt	η	Isolation	Quality
Electron	07 CeV	10 GeV	2.47	Gradient	TightLH
Muon	27 Gev		2.5	FCTightTrackOnly	Medium
Jet	(EMTopo) 25 GeV		2.5	JVT	
Tau	25 GeV		2.5	JetID : Medium, E	leID : Loose

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• LH discriminant: observables related to the shower shape in the calo and to the track matching the electromagnetic

• track multiplicity and a multivariate discriminant based on the track collimation, further jet substructure, and kinematic

• algorithms using angular and clusters informations between object which tells how much an object is isolated from all

ttH analysis - Resolved vs boosted \mathbf{O}

• 6 well separated <u>small-R jets</u> ("**resolved**"):

- standard jet reconstruction algorithms (anti- $k_{t} \Delta R < 0.4$);
- significant combinatorial background.

0 Silvia Biondi - Corso di Dottorato - AA 2019/2020

14.02.2020

ttH analysis - Resolved vs boosted

• 6 well separated <u>small-R jets</u> ("**resolved**"):

- standard jet reconstruction algorithms (anti- $k_{t} \Delta R < 0.4$);
- significant combinatorial background.

ttH analysis - Event pre-selection

Resolved

Dilepton channels

- 2 leptons;
- at least 3 jets;
- at least 3 b-tagged jets @ 60% WP in 3-jet category; & at least 3 b-tagged jets @ 70% WP in 4-jet
 - category;
- m_{ll} > 15 GeV;
- $m_{\parallel} < 83 \text{ GeV} \text{ or } m_{\parallel} > 99 \text{ GeV}.$

Single-lepton channels

- **o** 1 lepton;
- at least 5 jets;
- at least 4 b-tagged jets @ 70% WP.

 Boosted
 Single-lepton channel 1 lepton; at least 4 jets; at least 3 b-tagged jets @ 85% WP; at least 1 Higgs candidate*: pT > 300 GeV; mass in [100,140) GeV; exactly 2 b-tagged jets @85% WP associated; P(H) > 0.6.
* re-clustered jet: anti-k _T small-R jets (R=0.4) used to re-cluster the large-R jets (R = 1.0, $p_T > 200$ GeV, $ \eta < 2$, $m > 50$ GeV) in this analysis.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

modelling that can affect the performance of the ML technique.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

modelling that can affect the performance of the ML technique.

•	

ttH analysis - Event categorisation strategy 0

Event categorisation strategy

• regions where ttH and tt+bb are enhanced relative to the other backgrounds: 'signal regions' (SR) • multivariate techniques used to further separate ttH signal from background events; • remaining analysis categories: 'control regions' (CR)

- no attempt is made to separate signal from background in these regions,
- with the signal regions.

Region	#leptons	#jets	@60%	# <i>b</i> -tag @70%	@85%	#
$SR_{\geq 4j \geq 4b}^{2\ell}$ $SR_{\geq 4j \geq 4blow}^{2\ell}$ $CR_{\geq 4j3b}^{2\ell}$ $CR_{3j3b}^{2\ell}$	= 2	≥ 4 = 3	≥ 4 < 4 = 3	≥ 4 = 3		
$SR^{1\ell}_{\geq 6j \geq 4b}$ $SR^{1\ell}_{\geq 6j \geq 4b \text{low}}$ $SR^{1\ell}_{5i \geq 4b}$		≥ 6	≥ 4 < 4 ≥ 4	≥ 4	≥ 3	
$SR_{5j \ge 4b}^{3j \ge 4b}$ $SR_{5j \ge 4b \text{low}}^{1\ell}$ $SR_{boosted}^{1\ell}$		= 5 ≥ 4	< 4	_		

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• but they provide stringent constraints on backgrounds normalisations and systematic uncertainties in a combined fit

boosted Higgs candi	dates
_	
0	
≥ 1	

• Orthogonality between the regions ensured by

- **number of leptons** for the dilepton and single-lepton regions;
- number of boosted Higgs **candidates** for the single-lepton boosted and resolved regions;
- number of jets and of b-tagged jets using the 60% or 70% WPs for the different regions of each resolved channels;
- **Boosted veto**: events which fall in the boosted category are removed from the single-lepton resolved regions.

ttH analysis - background composition 0

I+jets categories

• $t\bar{t} + \ge 1b$ is the main background; • non tt = W/Z+jets, single top, diboson production processes.

0... Silvia Biondi - Corso di Dottorato - AA 2019/2020

dilepton categories

Silvia Biondi - Corso di Dottorato - AA 2019/2020

modelling that can affect the performance of the ML technique.

ttH analysis - reconstruction with a BDT

• BDTs trained to match reconstructed jets to the partons emitted from top-quark and Higgs-boson decays;

- distinguish between correct and incorrect jet assignments, using invariant masses and angular separations in addition to other kinematic variables as inputs;
- W-boson, top-quark and Higgs-boson candidates are built from combinations of jets and leptons;
- simulated ttH events are used to iterate over all allowed combinations.
- In each event, a specific combination of jet-parton assignments, corresponding to the best BDT output, is chosen in order to compute kinematic and topological information of the top-quark and Higgs-boson candidates to be input to the classification BDT.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

Select the best combination of jet-parton assignments in each event and build the Higgs-boson and top-quark candidates

ttH analysis - reconstruction with a BDT

- 0
- 0

0 b	est possible reconstruction per	formance can b	e obtained by ir	ncluding	Variable	6 jets
ir	formation related to the Higgs	boson (i.e. invari	ant mass):		Topological information from $t\bar{t}$	
	O possible bias in the bkg distri	ibutions of Higgs	-boson-related		Mass of toplep	\checkmark
	observables towards the sigr	nal expectation,	reducing their c	ability to	Mass of tophad	\checkmark
	separate signal from backgr	ound;	U	,	Mass of q_1 from W_{had} and b from top _{had}	-
• +	vo versions of the reconstructio	n BDT are used.			Mass of W_{had}	1
		n bor die 03ed.	• • • • • • • • • • • • • • • • • • •		Mass of W_{had} and b from top _{lep}	√ \
	O one with and one without the	e Higgs-boson in	formation and fl	he	Mass of q_1 from W_{had} and b from top _{lep}	-
	resulting jet-parton assignme	ents trom one, th	e other or both	are	Mass of W_{lep} and b from top _{had}	✓
	considered when computing	g input variables	for the classifica	ation BDT.	$\Delta R(W_{had}, b \text{ from top}_{had})$	✓
				-	$\Delta R(q_1 \text{ from } W_{\text{had}}, b \text{ from top}_{\text{had}})$	-
	Variables	BDT with Higgs info.	BDT w/o Higgs info.		$\Delta R(W_{had}, b \text{ from top}_{lep})$	✓
	Topological information from $t\bar{t}$			_	$\Delta R(q_1 \text{ from } W_{\text{had}}, b \text{ from top}_{\text{lep}})$	-
	Mass of top	\checkmark	✓	-	$\Delta R(\ell, b \text{ from top}_{\text{lep}})$	✓
	Mass of anti-top	✓	\checkmark	e	$\Delta R(\ell, b \text{ from top}_{had})$	✓
Ū	Mass difference between top and anti-top	\checkmark	\checkmark	C	$\Delta R(b \text{ from top}_{\text{lep}}, b \text{ from top}_{\text{had}})$	✓
	$\Delta R(\ell, b)$ from top	\checkmark	\checkmark		$\Delta R(q_1 \text{ from } W_{\text{had}}, q_2 \text{ from } W_{\text{had}})$	✓
ō	$\Delta R(\ell, b)$ from anti-top	\checkmark	✓	U	$\Delta R(b \text{ from } t_{\text{had}}, q_1 \text{ from } W_{\text{had}})$	✓
C	$ \Delta R(\ell, b)$ from top - $\Delta R(\ell, b)$ from anti-top		✓	_	$\Delta R(b \text{ from } t_{\text{had}}, q_2 \text{ from } W_{\text{had}})$	 ✓
c	$\Delta R(b \text{ from top, } b \text{ from anti-top})$	✓			Min. $\Delta R(b \text{ from top}_{had}, q_i \text{ from } W_{had})$	1
0	$\Delta \phi(b \text{ from top}, b \text{ from anti-top})$	-	l l	C C	$\Delta R(\text{lep, } b \text{ from top}_{\text{lep}}) - \min. \Delta R(b \text{ from top}_{\text{had}}, q_i \text{ from } W_{\text{had}})$	 ✓
Ö	$p_T b$ from top	_	×		Topological information from the Higgs-boson candidate	
	$p_T b$ from anti-top Min $An(l, b)$ from top or anti-top)	_	· ·	<u>•</u>	Mass of Higgs	\checkmark
σ	$\overline{\text{Translassical is formation for the History}}$	-	v	- 2	Mass of Higgs and q_1 from W_{had}	1
	Topological information from the Higgs-bose	on candidate	1	-	$\Delta R(b_1 \text{ from Higgs}, b_2 \text{ from Higgs})$	\checkmark
	Max. ΔR (Higgs, <i>b</i> from top or anti-top)		_		$\Delta R(b_1 \text{ from Higgs, lepton})$	1
	A R(Higgs tr)	↓ ↓	_		$\Delta R(b_1 \text{ from Higgs, } b \text{ from top}_{len})$	_
	$\Delta R(b_1 \text{ from Higgs, } b_2 \text{ from Higgs)}$				$\Delta R(b_1 \text{ from Higgs, } b \text{ from top}_{had})$	_
0		• • • • • • • • • • • • • • •		-		

Silvia Biondi - Corso di Dottorato - AA 2019/2020

* only resolved channels

ttH analysis - reconstruction with a LHD

Additional input variable for the classification BDT

- product of one-dimensional pdfs, for the signal and the background hypotheses: • built for various invariant masses and angular distributions from reconstructed jets and leptons and from the missing transverse momentum;
- Two background hypotheses are considered:
 - production of $tt \ge 2$ b-jets and $tt \ge 1$ b-jet;
 - likelihoods for both hypotheses are weighted by their relative fractions in simulated tt+jets events;
- The probabilities p_{sig} and p_{bkg}, for signal and background hypotheses, respectively, are obtained as the **product of the pdfs for the different kinematic** distributions.

5 jets	6 jets
$M_H(b_1, b_2)$	$M_H(b_1, b_2)$
$M_{t_l}(l, v, b_l)$	$M_{t_l}(l, v, b_l)$
$M_{W_h}(q_1, q_2)$	_
$[M_{t_h} - M_{W_h}](b_h, q_1, q_2)$	$M_{t_h}(b_h, q_1)$
$[M_{t_h t_l} - M_{t_h} - M_{t_l}](l, v, b_l, b_h, q_1, q_2)$	$[M_{t_h t_l} - M_{t_h} - M_{t_l}](l, v, l)$
$[M_{t_h t_l b_1 b_2} - M_{t_l t_h} - M_H](l, v, b_l, b_h, q_1, q_2, b_1, b_2)$	$[M_{t_h t_l b_1 b_2} - M_{t_l t_h} - M_H]$
$\cos \theta^*_{b_{1/2},H}(b_1,b_2)$	$\cos \theta^*_{b,H}(b_1, b_2)$
$\cos \theta^*_{b_1 b_2, t_h t_l b_1 b_2}(l, v, b_l, b_h, q_1, q_2, b_1, b_2)$	$\cos\theta^*_{b_1b_2,t_ht_lb_1b_2}(l,\nu,b_l,b_l)$

- b_l, b_h, q_1) $(l, v, b_l, b_h, q_1, b_1, b_2)$
- b_h, q_1, b_1, b_2

- For each event, the discriminant is defined as the ratio of the probability p_{sig} to the sum of **p**_{sig} and **p**_{bkg} and added as an input variable to the classification BDT;
- takes advantage of all possible combinations in the event, but it does not fully account for correlations between variables in one combination.

ttH analysis - reconstruction with a DNN

New region definition with new techniques

- multi-class deep neural network (DNN) is trained to identify the most likely parent particle of the RC jets, distinguishing between 3 categories: **Higgs-boson**, **top-quark** and **QCD** jets;
- improvement of the reconstruction matching of Higgs and top final objects wrt the previous analysis strategy;
- the output is used as **input for the classification BDT** and as an additional requirement of the boosted signal selection.

Variable	Description
m ^{RCjet}	mass of reclustered jet
$\sqrt{d_{12}}$	first splitting scale
$\sqrt{d_{23}}$	second splitting scale
Q_W	minimum invariant mass of constituent pairs
n _{constituents}	number of constituents in the RC jet
$p_{_{\mathbf{T}}}^{\mathrm{const}_1}$	$p_{\rm T}$ of constituent leading in pseudo-continuous <i>b</i> -tagging scor
$p_{\rm T}^{\rm const_2}$	$p_{\rm T}$ of constituent sub-leading in mv2
$mv2^{const_1}$	mv2 score of constituent leading in mv2
$mv2^{const_2}$	mv2 score of constituent sub-leading in mv2
$\Delta R(\text{const1}, \text{const2})$	angular separation between leading and sub-leading constituents i
m^{b-jets}	invariant mass of all <i>b</i> -tagged constituents
$m^{\text{light-jets}}$	invariant mass of all untagged constituents
$mv2_{min}$	minimum constituent mv2 score
mv2 _{max}	maximum constituent mv2 score
$\Delta R(\text{consts})_{\text{max}}$	maximum angular separation between two constituents
$\Delta R(\text{consts})_{\min}$	minimum angular separation between two constituents
mv2 ^{rest}	mv2 score of all constituents except the leading and sub-leading in

Silvia Biondi - Corso di Dottorato - AA 2019/2020

* only boosted channel

- quark:
 - constituents of the RC jet within a cone of $\Delta R = 0.4$;

Silvia Biondi - Corso di Dottorato - AA 2019/2020

ttH analysis - classification BDTs

Events used in the training

- inclusive selection of events with at least 4 jets;
- O at least 4 of which are b-tagged using the 70% working po
- For variables depending on b-tagged jets, only jets b-tagg using the 70% WP are considered.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

dilepton channel

pint.	Variable	Definition			
	General kiner	natic variables			
	m_{bb}^{\min}	Minimum invariant mass of a <i>b</i> -tagged jet pair			
jea	$m_{bb}^{\min \Delta R}$	Invariant mass of the <i>b</i> -tagged jet pair with minimum Δ .			
	$m_{jj}^{\max p_{\mathrm{T}}}$	Invariant mass of the jet pair with maximum $p_{\rm T}$			
	$m_{bb}^{\max p_{\mathrm{T}}}$	Invariant mass of the b -tagged jet pair with maximum p			
	$\Delta \eta_{bb}^{ m avg}$	Average $\Delta \eta$ for all <i>b</i> -tagged jet pairs			
	$N_{bb}^{ m Higgs~30}$	Number of <i>b</i> -tagged jet pairs with invariant mass with 30 GeV of the Higgs-boson mass			
	Variables from reconstruction BDT				
	BDT output	Output of the reconstruction BDT			
	$m_{bb}^{ m Higgs}$	Higgs candidate mass			
	$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system			
	$\Delta R_{H,\ell}^{\min}$	Minimum ΔR between Higgs candidate and lepton			
	$\Delta R_{H,b}^{\min}$	Minimum ΔR between Higgs candidate and <i>b</i> -jet from to			

* variables from reconstruction BDT using Higgs-boson information **** variables from both recoBDT (with and without Higgs information)**

14.02.2020

ttH analysis - classification BDTs

Events used in the training of the 5 jets (6 jets) classification BDT • inclusive selection of events with at least 5 (6) jets;

- 4 of which are b-tagged using the 85% working point.
- For variables depending on b-tagged jets, jets are sorted by their pseudo-continuous b-tag (PCB) score, and by their pt when they have the same b-tag score;
- LHD and recoBDT outputs is included for both the BDTs.

	Variable	Definition single-lepton channel	6 je
	General kinen	natic variables	
• • • • •	$\Delta R_{bb}^{\rm avg}$	Average ΔR for all <i>b</i> -tagged jet pairs	\checkmark
	$\Delta R_{bb}^{\max p_{\mathrm{T}}}$	ΔR between the two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$	~
	$\Delta \eta_{jj}^{\max}$	Maximum $\Delta \eta$ between any two jets	\checkmark
	$m_{bb}^{\min \Delta R}$	Mass of the combination of two <i>b</i> -tagged jets with the smallest ΔR	~
	$m_{ m jj}^{ m min \ \Delta R}$	Mass of the combination of any two jets with the smallest ΔR	-
	$N_{bb}^{ m Higgs~30}$	Number of <i>b</i> -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	~
	$H_{ m T}^{ m had}$	Scalar sum of jet $p_{\rm T}$	-
	$\Delta R_{\ell,bb}^{\min}$	ΔR between the lepton and the combination of the two <i>b</i> -tagged jets with the smallest ΔR	_
	Aplanarity	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor [117] built with all jets	~
	H_1	Second Fox-Wolfram moment computed using all jets and the lepton	\checkmark
	Variables from	n reconstruction BDT	
-	BDT output	Output of the reconstruction BDT	✓
_	$m_{bb}^{ m Higgs}$	Higgs candidate mass	~
-	$m_{H,b_{\mathrm{lep top}}}$	Mass of Higgs candidate and <i>b</i> -jet from leptonic top candidate	\checkmark
_	$\Delta R_{bb}^{ m Higgs}$	ΔR between <i>b</i> -jets from the Higgs candidate	~
-	$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	\checkmark
_	$\Delta R_{H, \text{lep top}}$	ΔR between Higgs candidate and leptonic top candidate	~
	$\Delta R_{H,b_{ ext{had top}}}$	ΔR between Higgs candidate and <i>b</i> -jet from hadronic top candidate	-
	Variables from	n likelihood calculations	
_	LHD	Likelihood discriminant	\checkmark
_	Variables from	n <i>b</i> -tagging (not in $SR^{1\ell}_{\geq 6i \geq 4b60}$)	
 1	$w_{b-\mathrm{tag}}^{\mathrm{Higgs}}$	Sum of <i>b</i> -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	~
JL	$B_{\rm jet}^3$	3 rd largest jet <i>b</i> -tagging discriminant	~
	$B_{\rm jet}^4$	4 th largest jet <i>b</i> -tagging discriminant	\checkmark
	$B_{\rm jet}^5$	5 th largest jet <i>b</i> -tagging discriminant	~

ttH analysis - classification BDTs

Events used in the training

• events passing the event selection of the channel;

- For variables depending on b-tagged jets, jets are sorted by their PCB score, and by their p_T when they have the same b-tag score;
- **DNN** output also included in the input variables list.

 \mathbf{O} · · Silvia Biondi - Corso di Dottorato - AA 2019/2020

boosted channel

Variable	Description
m _{Higgs}	Higgs candidate mass
p_{T} Higgs	Higgs candidate transverse momentum
$\eta_{\rm Higgs}^{\rm lep}$	η of the Higgs candidate relative to the lepton
$P(H)_{Higgs}$	DNN Higgs probability for the Higgs candidate
m _{hadTop}	hadronic top candidate mass
$p_{\rm T}$ had Top	hadronic top candidate transverse momentum
$\eta_{ m hadTop}^{ m lep}$	η of the hadronic top candidate relative to the lepton
$PCB_{hadTop}^{jet_i}$	PCB score of the i^{th} jet associated to the hadronic top
m _{lepTop}	leptonic top candidate mass
p_{T} leptop	leptonic top candidate transverse momentum
PCB ^{jet} _{lepTop}	PCB score of the jet associated to the leptonic top
n _{jets}	small-R jets multiplicity
ΔR (Higgs, hadTop)	ΔR between the Higgs and the hadronic top candidates
ΔR (Higgs, lepTop)	ΔR between the Higgs and the leptonic top candidates
ΔR (hadTop, lepTop)	ΔR between the hadronic top and the leptonic top candidates
$p_{\mathrm{T}} {}^{t ar{t} H}$	transverse momentum of the $t\bar{t}H$ system
$p_{\mathrm{T}} {}^{tar{t}}$	transverse momentum of the $t\bar{t}$ system
PCB ^{sum}	PCB score sum of the jets associated to the Higgs, hadronic and le
PCB ^{add jet}	PCB score of the additional jet in the event

ttH analysis - Systematic model

Systematic uncertainty	Туре	Comp.
Experimental uncertainties		
Luminosity	Ν	1
Pileup modeling	SN	1
Physics Objects		
Electrons	SN	7
Muons	SN	15
Jet energy scale	SN	31
Jet energy resolution	SN	9
Jet vertex tagger	SN	1
$E_{\mathrm{T}}^{\mathrm{miss}}$	SN	3
b-tagging		
Efficiency	SN	45
Mis-tag rate (c)	SN	20
Mis-tag rate (light)	SN	20

Signal and background modeling	3	
Signal		
$t\bar{t}H$ cross-section	Ν	2
H branching fractions	Ν	3
$t\bar{t}H$ modeling	SN	4
tt Background		
$t\bar{t}$ cross-section	Ν	1
$t\bar{t} + \geq 1c$ normalization	Ν	1
$t\bar{t} + \geq 1b$ normalization	N (free floating)	1
$t\bar{t}$ + light modeling	SN	4
$t\bar{t} + \ge 1c$ modeling	SN	4
$t\bar{t} + \ge 1b$ modeling	SN	4

Silvia Biondi - Corso di Dottorato - AA 2019/2020

- a single independent nuisance parameter is assigned to each source of systematic uncertainty in the statistical analysis;
- o some of the systematic uncertainties are decomposed into several independent sources (≥ 1 NP);
- each individual source has a correlated effect across all the channels, analysis categories, signal and background samples

• It background modelling requires a careful and

complex treatment.

Ν	2
Ν	2
SN	1
SN	1
Ν	3
SN	?
Ν	3
Ν	3
Ν	1
Ν	1
Ν	?
SN	8
	N N SN SN N SN N N N N SN

ttH analysis - tt background model 0

• $t+\geq 1b$, $t+\geq 1c$ and t+ light processes affected by different types of uncertainties:

- **tt+light**: profits from relatively precise measurements in data;
- the c- and the b-quark contribute to additional differences between these two processes.

Uncertainty source	Description		Components
$t\bar{t}$ cross-section	Up or down by 6%		$t\bar{t} + \text{light}$
$t\bar{t} + \geq 1b$ normalisation	Free-floating		$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1c$ normalisation	Up or down by 50%		$t\bar{t} + \geq 1c$
NLO matching	MadGraph5_aMC@NLO +Pythia8 $t\bar{t}$ (5FS)	vs. PowhegBox+Pythia8 $t\bar{t}$ (5FS)	All
PS & hadronisation	PowhegBox+Herwig7 $t\bar{t}$ (5FS)	vs. PowhegBox+Pythia8 $t\bar{t}$ (5FS)	All
ICD	Verying or ISR (DS) up & up (ME)	in PowhegBox+Pythia8 $t\bar{t}b\bar{b}$ (4FS)	$t\bar{t} + \geq 1b$
15K	varying $a_S^{(FS)}$, $\mu_R \alpha \mu_F$ (ME)	in PowhegBox+Pythia8 $t\bar{t}$ (5FS)	$t\bar{t} + \geq 1c, t\bar{t} + \text{light}$
ECD	Varian FSR (DC)	in PowhegBox+Pythia8 $t\bar{t}b\bar{b}$ (4FS)	$t\bar{t} + \geq 1b$
гэк	varying α_{S}^{-} (PS)	in PowhegBox+Pythia8 $t\bar{t}$ (5FS)	$t\overline{t} + \geq 1c, t\overline{t} + \text{light}$

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• #+≥1b and #+≥1c can have similar or different diagrams depending on the flavour scheme used for the PDF, different mass of

ttH analysis - tt background model

• $t+\geq 1b$, $t+\geq 1c$ and t+ light processes affected by different types of uncertainties:

- **tt+light**: profits from relatively precise measurements in data;
- the c- and the b-quark contribute to additional differences between these two processes.

• Systematic uncertainties on the acceptance and shapes (nominal vs different MC samples and settings)

- comparing to these alternative setups.
- the normalisation of this sub-process is measured on data by the profile likelihood fit (free-floating);

Uncertainty source	Description		Components
$t\bar{t}$ cross-section	Up or down by 6%		$t\bar{t} + \text{light}$
$t\bar{t} + \geq 1b$ normalisation	Free-floating		$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1c$ normalisation	Up or down by 50%		$t\bar{t} + \geq 1c$
NLO matching	MadGraph5_aMC@NLO +Pythia8 $t\bar{t}$ (5FS)	VS. POWHEGBOX+PYTHIA8 $t\bar{t}$ (5FS)	All
PS & hadronisation	PowhegBox+Herwig7 $t\bar{t}$ (5FS)	vs. PowhegBox+Pythia8 $t\bar{t}$ (5FS)	All
ISR	Varying $\alpha_S^{\rm ISR}$ (PS), $\mu_{\rm R}\&\mu_{\rm F}$ (ME)	in PowhegBox+Pythia8 $t\bar{t}b\bar{b}$ (4FS) in PowhegBox+Pythia8 $t\bar{t}$ (5FS)	$t\overline{t} + \geq 1b$ $t\overline{t} + \geq 1c, t\overline{t} + \text{light}$
FSR	Varying α_S^{FSR} (PS)	in PowhegBox+Pythia8 $t\bar{t}b\bar{b}$ (4FS) in PowhegBox+Pythia8 $t\bar{t}$ (5FS)	$t\overline{t} + \ge 1b$ $t\overline{t} + \ge 1c, t\overline{t} + \text{light}$

Silvia Biondi - Corso di Dottorato - AA 2019/2020

 t+≥1b and t+≥1c can have similar or different diagrams depending on the flavour scheme used for the PDF, different mass of

• Such comparisons would change significantly the fractions of tt+≥1b in the phase-space selected in this analysis when

• reweighing of the alternative predictions is applied in such a way to have the same fraction of $tt+\geq 1b$ as the nominal sample.

ttH analysis - tt background model

• $t+\geq 1b$, $t+\geq 1c$ and t+ light processes affected by different types of uncertainties:

- **tt+light**: profits from relatively precise measurements in data;
- the c- and the b-quark contribute to additional differences between these two processes.

• Systematic uncertainties on the acceptance and shapes (nominal vs different MC samples and settings)

- comparing to these alternative setups.
- the normalisation of this sub-process is measured on data by the profile likelihood fit (free-floating);

• Modelling uncertainties of $tt+\geq 1b$ ($tt+\geq 1c$ and tt+light) by the nominal prediction MC sample

same process generated in the ME and with sufficient stats.

Uncertainty source	Description		Components
$t\bar{t}$ cross-section	Up or down by 6%		$t\bar{t} + \text{light}$
$t\bar{t} + \geq 1b$ normalisation	Free-floating		$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1c$ normalisation	Up or down by 50%		$t\bar{t} + \geq 1c$
NLO matching	MadGraph5_aMC@NLO +Pythia8 $t\bar{t}$ (5FS)	VS. POWHEGBOX+PYTHIA8 $t\bar{t}$ (5FS)	All
PS & hadronisation	PowhegBox+Herwig7 $t\bar{t}$ (5FS)	vs. PowhegBox+Pythia8 $t\bar{t}$ (5FS)	All
ISR	Varying $\alpha_S^{\rm ISR}$ (PS), $\mu_{\rm R} \& \mu_{\rm F}$ (ME)	in PowhegBox+Pythia8 $t\bar{t}b\bar{b}$ (4FS) in PowhegBox+Pythia8 $t\bar{t}$ (5FS)	$t\overline{t} + \ge 1b$ $t\overline{t} + \ge 1c, t\overline{t} + \text{light}$
FSR	Varying α_S^{FSR} (PS)	in PowhegBox+Pythia8 $t\bar{t}b\bar{b}$ (4FS) in PowhegBox+Pythia8 $t\bar{t}$ (5FS)	$t\bar{t} + \ge 1b$ $t\bar{t} + \ge 1c, t\bar{t} + \text{light}$

Silvia Biondi - Corso di Dottorato - AA 2019/2020

• #+≥1b and #+≥1c can have similar or different diagrams depending on the flavour scheme used for the PDF, different mass of

• Such comparisons would change significantly the fractions of tt+≥1b in the phase-space selected in this analysis when

• reweighing of the alternative predictions is applied in such a way to have the same fraction of $tt+\geq 1b$ as the nominal sample.

• need to distinguish different effects in the modelling, while comparing, for each component, different MC setups with the

ttH analysis - signal extraction

correspond to the amount that best fits the data:

• impact of syst uncertainties on the search sensitivity can be reduced by taking advantage of the highly populated background-dominated CRs included in the likelihood fit.

• Normalisation of each background is determined from the fit simultaneously with μ :

• Contributions from backgrounds are constrained by the theoretical uncertainties, the uncertainty on the luminosity, and the **data themselves**.

• Statistical uncertainties in each bin of the discriminants are taken into account by dedicated parameters in the fit.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

14.02.2020 30

ttH analysis - signal extraction

• Fit effect on distributions and systematic uncertainties:

- significant improvement in data/MC agreement from the pre-fit plot to the post-fit one;
- estimated number of events is in agreement with the number of data in all the regions;
- the systematics bands are reduced significantly with the fit.

just for educational purposes! these plots are from my PhD thesis and not related to this analysis anymore

ttH analysis - Recent results: evidence ttH(bb) analysis - 2018 **Evidence of ttH process - 2018** $H \rightarrow \gamma \gamma, ZZ^*, bb, ML$ • Results from the first evidence of the ttH process at LHC; # + ≥1b : 1.24 ± 0.10 **36 fb**⁻¹ • Free-floating normalisation factors for tt+Heavy Flavour jets: # + ≥1c : 1.63 ± 0.23

• Best-fit: $\mu_{t\bar{t}H} = \sigma_{t\bar{t}H} / \sigma_{SM} = 0.84^{+0.64}_{-0.61}$

• Precision limited by systematic uncertainty on $tt + \geq 1b$ simulation.

ottH analysis - Recent results: evidence

Results

• combination of different channels allowed to reach the first evidence of thee ttH production modes;

Both systematic and statistical uncertainties limit the measurements;
 measured cross-section compatible with SM prediction.

Silvia Biondi - Corso di Dottorato - AA 2019/2020

ttH(bb) analysis - 2018

Evidence of ttH process - 2018

	Channel	Best	fit µ	Signifi	cance
		Observed	Expected	Observed	Expected
	Multilepton	$1.6 ^{+0.5}_{-0.4}$	$1.0 {}^{+0.4}_{-0.4}$	4.1σ	2.8σ
	$H \rightarrow b \bar{b}$	$0.8 \ ^{+0.6}_{-0.6}$	$1.0 ^{+0.6}_{-0.6}$	1.4σ	1.6σ
	$H ightarrow \gamma \gamma$	$0.6 \ ^{+0.7}_{-0.6}$	$1.0 {}^{+0.8}_{-0.6}$	0.9σ	1.7σ
	$H \rightarrow 4\ell$	< 1.9	$1.0^{+3.2}_{-1.0}$		0.6σ
•	Combined	$1.2 \substack{+0.3 \\ -0.3}$	$1.0^{+0.3}_{-0.3}$	4.2σ	3.8 <i>o</i>
• •					
	Uncertainty s	ource			$\Delta \mu$
	$t\bar{t}$ modeling i	n $H \rightarrow b\bar{b}$ at	nalysis	+0.15	-0.14
	ttH modeling	g (cross section	on)	+0.13	-0.06
	Nonprompt li	ght-lepton an	nd	+0.09	-0.09
	fake $ au_{ ext{had}}$ es	stimates			
	Simulation st	atistics		+0.08	-0.08
	Jet energy sca	ale and resol	ution	+0.08	-0.07
	$t\bar{t}V$ modeling			+0.07	-0.07
	<i>ttH</i> modeling	g (acceptance)	+0.07	-0.04
	Other non-Hi	ggs boson ba	ackgrounds	+0.06	-0.05
	Other experim	nental uncert	ainties	+0.05	-0.05
	Luminosity			+0.05	-0.04
	Jet flavor tag	ging		+0.03	-0.02
	Modeling of	other Higgs	boson	+0.01	-0.01
	production	modes			
	Total systema	tic uncertain	ty	+0.27	-0.23
	Statistical und	certainty		+0.19	-0.19
	Total uncertai	inty	+0.34	-0.30	

14.02.2020

• Results from the first observation of the ttH process at LHC

ttH analysis - Recent results: observation

• Results from the first observation of the ttH process at LHC; • 36 fb⁻¹ for ttH(bb) and ttH multilepton, 79.8 fb⁻¹ for ttH(gg) and ttH(4I); • combination with Run 1 data (4.5 fb⁻¹ @ 7 TeV, 20.3 fb⁻¹ @ 8 TeV).

• Best-fit: $\mu_{t\bar{t}H} = \sigma_{t\bar{t}H} / \sigma_{SM} = 1.32^{+0.28}_{-0.26}$

• tH(bb) precision limited by systematic uncertainty on $tt + \geq 1b$ simulation.

Observation of ttH process - 2018

 $H \rightarrow \gamma \gamma, ZZ^*, b\bar{b}, ML$

ttH cross section 1.32 times higher wrt the SM one

→ still compatible in 20% of the measurement precision

ttH analysis - Recent results: obs

O Summary of the systematic uncertainties affecting the con cross-section measurement at 13 TeV

- only systematic uncertainty sources with at least 1% imp
- MC statistical uncertainty is due to limited numbers of si events.

• Measured total ttH production cross sections at 13 TeV

• Since no event is observed in the $H \rightarrow ZZ^* \rightarrow 4I$ decay cho observed upper limit is set at 68% CL on the ttH cross se channel using pseudo-experiments

Integrated	$t\bar{t}H$ cross	Obs.	Exp.
luminosity [fb ⁻¹]	section [fb]	sign.	sign.
79.8	710_{-190}^{+210} (stat.) $_{-90}^{+120}$ (syst.)	4.1 <i>σ</i>	3.7 <i>σ</i>
36.1	790 ±150 (stat.) $^{+150}_{-140}$ (syst.)	4.1σ	2.8σ
36.1	400^{+150}_{-140} (stat.) ± 270 (syst.)	1.4σ	1.6 <i>o</i>
79.8	<900 (68% CL)	0σ	1.2σ
36.1-79.8	670 ± 90 (stat.) $^{+110}_{-100}$ (syst.)	5.8σ	4.9σ
4.5, 20.3, 36.1–79.8		6.3 <i>σ</i>	5.1 <i>o</i>
	Integrated luminosity [fb ⁻¹] 79.8 36.1 36.1 79.8 36.1–79.8 4.5, 20.3, 36.1–79.8	Integrated $t\bar{t}H$ crossluminosity [fb ⁻¹]section [fb]79.8 710_{-190}^{+210} (stat.) $_{-90}^{+120}$ (syst.)36.1 790 ± 150 (stat.) $_{-140}^{+150}$ (syst.)36.1 400_{-140}^{+150} (stat.) ± 270 (syst.)79.8 <900 (68% CL)36.1-79.8 670 ± 90 (stat.) $_{-100}^{+110}$ (syst.)4.5, 20.3, 36.1-79.8 $-$	Integrated $t\bar{t}H$ crossObs.luminosity [fb ⁻¹]section [fb]sign.79.8 $710 \frac{+210}{-190} (stat.) \frac{+120}{90} (syst.)$ 4.1σ 36.1 $790 \pm 150 (stat.) \frac{+150}{-140} (syst.)$ 4.1σ 36.1 $400 \frac{+150}{-140} (stat.) \pm 270 (syst.)$ 1.4σ 79.8 $<900 (68\% CL)$ 0σ 36.1-79.8 $670 \pm 90 (stat.) \frac{+110}{-100} (syst.)$ 5.8σ $4.5, 20.3, 36.1-79.8$ $ 6.3\sigma$

servation		Observation o	f ttH process - 2018
• • • • • • • • • •	U	ncertainty source	$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ [%]
		heory uncertainties (modelling)	11.9
mbined ttH		$t\bar{t}$ + heavy flavour	9.9
		tŦH	6.0
pact are listed;		Non- <i>ttH</i> Higgs boson production	1.5
simulated		Other background processes	2.2
	E	xperimental uncertainties	9.3
		Fake leptons	5.2
		Jets, $E_{\rm T}^{\rm miss}$	4.9
annel an		Electrons, photons	3.2
ection in that		Luminosity	3.0
		τ -leptons	2.5
		Flavour tagging	1.8
	Μ	C statistical uncertainties	4.4
<i>tH</i> cross	Obs.	Exp.	
ation [fh]	aion	-	

ttH analysis - Recent results: obs

O Summary of the systematic uncertainties affecting the con cross-section measurement at 13 TeV

- only systematic uncertainty sources with at least 1% imp
- MC statistical uncertainty is due to limited numbers of si events.

• Measured total ttH production cross sections at 13 TeV

• Since no event is observed in the $H \rightarrow ZZ^* \rightarrow 4I$ decay cho observed upper limit is set at 68% CL on the ttH cróss se channel using pseudo-experiments.

Analysis	Integrated	$t\bar{t}H$ cross	Obs.	Exp.
	luminosity [fb ⁻¹]	section [fb]	sign.	sign.
$H \rightarrow \gamma \gamma$	79.8	710 $^{+210}_{-190}$ (stat.) $^{+120}_{-90}$ (syst.)	4 .1 <i>σ</i>	3.7σ
$H \rightarrow$ multilepton	36.1	790 ±150 (stat.) $^{+150}_{-140}$ (syst.)	4.1 <i>o</i>	2.8σ
$H \rightarrow b\bar{b}$	36.1	400^{+150}_{-140} (stat.) ± 270 (syst.)	1.4σ	1.6 <i>o</i>
$H \to Z Z^* \to 4\ell$	79.8	<900 (68% CL)	0σ	1.2σ
Combined (13 TeV)	36.1-79.8	670 ± 90 (stat.) $^{+110}_{-100}$ (syst.)	5.8σ	4.9σ
Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1–79.8		6.3 <i>σ</i>	5.1 <i>o</i>

servation	Observation o	f ttH process - 2018
• • • • • • • • • •	Uncertainty source	$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ [%]
	Theory uncertainties (modelling)	11.9
mbined ttH	$t\bar{t}$ + heavy flavour	9.9
	tĪH	6.0
pact are listed;	Non- <i>ttH</i> Higgs boson production	1.5
simulated	Other background processes	2.2
	Experimental uncertainties	9.3
	Fake leptons	5.2
	Jets, $E_{\rm T}^{\rm miss}$	4.9
annel. an	Electrons, photons	3.2
ection in that	Luminosity	3.0
	au-leptons	2.5
	Flavour tagging	1.8
	MC statistical uncertainties	4.4
$\overline{t}H$ cross	Obs. Exp.	

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Supporting material

		ŀ	t	┝		(\sum				С		•	У	' C		S)	_	-	f		t	t	e	い	C			C		k		S	e	2	r	\mathbf{V}	/ (С	C		e	5	S	•										
0	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•	•	•	•	• (•

Years	$\int Ldt [fb^{-1}]$	Uncertainty [%]
	Leptonic chan	nels
2015-2016	36.2	2.1
2017	44.3	2.4
2015-2017	80.5	2.0
2018	58.5	2.0
2015-2018	139.0	1.7

ttH analysis - Recent results: evidence

Coupling studies performed as well

- scan in the $k_{F}-k_{V}$ plane from the combination of all ttH channels;
- assuming Higgs boson not to couple to any BSM particles;
- good agreement with the SM prediction.

 \mathbf{O} · · Silvia Biondi - Corso di Dottorato - AA 2019/2020

ttH(bb) analysis - 2018

 $H \rightarrow \gamma \gamma, ZZ^*, b\bar{b}, ML$

ttH analysis - fitted observables

0

• Event yields in CRs of dilepton channel.

ttH analysis - observation

ttH analysis - observation

	Expected				Observed
Bin	<i>tī</i> H (signal)	Non- <i>tī</i> H Higgs	Non-Higgs	Total	Total
$H o \gamma \gamma$					
Had 1	4.2 ± 1.1	0.49 ± 0.33	1.8 ± 0.5	6.4 ± 1.3	10
Had 2	3.4 ± 0.7	0.7 ± 0.6	7.5 ± 1.1	11.6 ± 1.5	14
Had 3	4.7 ± 0.9	2.0 ± 1.7	32.9 ± 2.2	39.6 ± 3.2	47
Had 4	3.0 ± 0.5	3.2 ± 3.1	55.0 ± 2.8	61 ± 5	67
Lep 1	4.5 ± 1.0	0.24 ± 0.09	2.2 ± 0.6	6.9 ± 1.2	7
Lep 2	2.2 ± 0.4	0.27 ± 0.10	4.6 ± 0.9	7.1 ± 1.0	7
Lep 3	0.82 ± 0.18	0.30 ± 0.13	4.6 ± 0.9	5.7 ± 0.9	5
$H \to ZZ^* \to 4\ell$					
Had 1	0.169 ± 0.031	0.021 ± 0.007	0.008 ± 0.008	0.198 ± 0.033	0
Had 2	0.216 ± 0.032	0.20 ± 0.09	0.22 ± 0.12	0.63 ± 0.16	0
Lep	0.212 ± 0.031	0.0256 ± 0.0023	0.015 ± 0.013	0.253 ± 0.034	0

0 Silvia Biondi - Corso di Dottorato - AA 2019/2020

43

